Skip to main content

Biomarkers of Cocoa Consumption

  • Chapter
Chocolate and Health

Abstract

Cocoa is a rich source of polyphenols; indeed cocoa beans contain approximately 6–8% polyphenols by dry weight [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grassi D, Desideri G, Necozione S et al (2008) Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J Nutr 138(9):1671–1676

    PubMed  CAS  Google Scholar 

  2. Rusconi M, Conti A (2010) Theobroma cacao L., the food of the gods: A scientific approach beyond myths and claims. Pharmacol Res 61(1):5–13

    Article  PubMed  CAS  Google Scholar 

  3. Gu L, House SE, Wu X et al (2006) Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agric Food Chem 54(11):4057–4061

    Article  PubMed  CAS  Google Scholar 

  4. Urpi-Sarda M, Monagas M, Khan N et al (2009) Epicatechin, procyanidins, and phenolic microbial metabolites after cocoa intake in humans and rats. Anal Bioanal Chem 394(6):1545–1556

    Article  PubMed  CAS  Google Scholar 

  5. Holt RR, Lazarus SA, Sullards MC et al (2002) Procyanidin dimer b2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr 76(4):798–804

    PubMed  CAS  Google Scholar 

  6. Appeldoorn M et al (2009) Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-gamma-valerolactone as the major metabolites. J Agric Food Chem 57(3):1084–1092

    Article  PubMed  CAS  Google Scholar 

  7. Rios LY, Gonthier MP, Remesy C et al (2003) Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. Am J Clin Nutr 77(4):912–918

    PubMed  CAS  Google Scholar 

  8. Urpi-Sarda M, Monagas M, Khan N et al (2009) Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216(43):7258–7267

    Article  PubMed  CAS  Google Scholar 

  9. Mennen LI, Sapinho D, Ito H et al (2006) Urinary flavonoids and phenolic acids as biomarkers of intake for polyphenol-rich foods. Br J Nutr 96(1):191–198

    Article  PubMed  CAS  Google Scholar 

  10. Spencer JP, Abd El Mohsen MM, Minihane AM et al (2008) Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. Br J Nutr 99(1):12–22

    Article  PubMed  CAS  Google Scholar 

  11. Llorach R (2009) An LC-MS-based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption. J Proteome Res 8:5060–5068

    Article  PubMed  CAS  Google Scholar 

  12. Rodopoulos N, Hojvall L, Norman A (1996) Elimination of theobromine metabolites in healthy adults. Scand J Clin Lab Invest 56(4):373–383

    Article  PubMed  CAS  Google Scholar 

  13. Tomas-Barberan FA, Cienfuegos-Jovellanos E, Marin A et al (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55(10):3926–3935

    Article  PubMed  CAS  Google Scholar 

  14. Fardet A, Llorach R, Martin JF et al (2008) A liquid chromatography-quadrupole time-offlight (LC-qTOF)-based metabolomic approach reveals new metabolic effects of catechin in rats fed high-fat diets. J Proteome Res 7(6):2388–2398

    Article  PubMed  CAS  Google Scholar 

  15. Willeke U HV, Meise M, Neuhann H et al (1979) Mutually exclusive occurrence and metabolism of trigonelline and nicotinic acid arabinoside in plant cell cultures. Phytochemistry 18:105–110

    Article  CAS  Google Scholar 

  16. Clifford MN (1985) Chemical and physical aspects of green coffee and coffee products. In: Clifford MN, Willson KC (eds) Coffee: Botany, biochemistry and production of beans and beverage. Croom-Helm, London

    Google Scholar 

  17. Mazzafera P (1991) Trigonelline in coffee. Phytochemistry 30:2309–2310

    Article  CAS  Google Scholar 

  18. Holcenberg JS, Stadtman ER (1969) Nicotinic acid metabolism. 3. Purification and properties of a nicotinic acid hydroxylase. J Biol Chem 244(5):1194–1203

    PubMed  CAS  Google Scholar 

  19. Zheng XQ, Nagai C, Ashihara H (2004) Pyridine nucleotide cycle and trigonelline (n-methylnicotinic acid) synthesis in developing leaves and fruits of coffea arabica. Physiol Plant 122:404–411

    Article  CAS  Google Scholar 

  20. Lang R, Yagar EF, Eggers R et al (2008) Quantitative investigation of trigonelline, nicotinic acid, and nicotinamide in foods, urine, and plasma by means of LC-MS/MS and stable isotope dilution analysis. J Agric Food Chem 56(23):11114–11121

    Article  PubMed  CAS  Google Scholar 

  21. Lang R, Wahl A, Skurk T et al (2010) Development of a hydrophilic liquid interaction chromatography-high-performance liquid chromatography-tandem mass spectrometry based stable isotope dilution analysis and pharmacokinetic studies on bioactive pyridines in human plasma and urine after coffee consumption. Anal Chem 82(4):1486–1497

    Article  PubMed  CAS  Google Scholar 

  22. Ito H, Gonthier MP, Manach C et al (2005) Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. Br J Nutr 94(4):500–509

    Article  PubMed  CAS  Google Scholar 

  23. Clifford MN (1999) Chlorogenic acids and other cinnamates nature, occurrence and dietary burden. J Sci Food Agric 79(3):362–372

    Article  CAS  Google Scholar 

  24. Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem 109(4):691–702

    Article  CAS  Google Scholar 

  25. Chesson A, Provan GJ, Russell WR et al (1999) Hydroxycinnamic acids in the digestive tract of livestock and humans. J Sci Food Agric 79(3):373–378

    Article  CAS  Google Scholar 

  26. Konishi Y, Zhao Z, Shimizu M (2006) Phenolic acids are absorbed from the rat stomach with different absorption rates. J Agric Food Chem 54(20):7539–7543

    Article  PubMed  CAS  Google Scholar 

  27. Yang C, Tian Y, Zhang Z et al (2007) High-performance liquid chromatography-electrospray ionization mass spectrometry determination of sodium ferulate in human plasma. J Pharm Biomed Anal 43(3):945–950

    Article  PubMed  CAS  Google Scholar 

  28. Greer F, Hudson R, Ross R et al (2001) Caffeine ingestion decreases glucose disposal during a hyperinsulinemic-euglycemic clamp in sedentary humans. Diabetes 50(10):2349–2354

    Article  PubMed  CAS  Google Scholar 

  29. Tarka SM, Hurst W J (eds) (1998) Introduction to the chemistry, isolation, and the biosynthesis of methylxanthines. In: Spiller G (ed), Caffeine. CRC Press LLC, Boca Raton, FL, pp 1–11

    Google Scholar 

  30. Apgar JL, Tarka SM (eds) (1999) Methylxanthines. In: Knight I (ed) Chocolate and cocoa: Health and nutrition. Blackwell Science, Oxford, England, pp 153–173

    Google Scholar 

  31. Ptolemy AS, Tzioumis E, Thomke A et al (2010) Quantification of theobromine and caffeine in saliva, plasma and urine via liquid chromatography-tandem mass spectrometry: A single analytical protocol applicable to cocoa intervention studies. J Chromatogr B Analyt Technol Biomed Life Sci 878(3–4):409–416

    PubMed  CAS  Google Scholar 

  32. Ramli N, Rahman SA, Hassan O et al (2000) Caffeine and theobromine levels in chocolate couverture and coating products. Mal J Nutr 6:55–63

    CAS  Google Scholar 

  33. World Health Organization, International Agency for Research on Cancer (1991) Theobromine. Coffee, tea, mate, methylxanthines and methylglyoxal. Lyon, pp 421–441

    Google Scholar 

  34. Alemanno L, Ramos T, Gargadenec A et al (2003) Localization and identification of phenolic compounds in Theobroma cacao L. Somatic embryogenesis. Ann Bot 92(4):613–623

    Article  PubMed  CAS  Google Scholar 

  35. Baba S, Osakabe N, Kato Y et al (2007) Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am J Clin Nutr 85(3):709–717

    PubMed  CAS  Google Scholar 

  36. Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44(4):205–221

    Article  PubMed  CAS  Google Scholar 

  37. Blank I, Sen A, Grosch W (1992) Potent odorants of the roasted powder and brew of arabica coffee. Z Lebensm Unters Forsch 195:239–245

    Article  CAS  Google Scholar 

  38. Bonvehí JS (2005) Investigation of aromatic compounds in roasted cocoa powder. Eur Food Res Technol 221:19–29

    Article  Google Scholar 

Suggested Readings

  • Medina-Remon A et al (2009) Rapid Folin-Ciocalteu method using microtiter 96-well plate cartridges for solid phase extraction to assess urinary total phenolic compounds, as a biomarker of total polyphenols intake. Anal Chim Acta 634(1):54–60

    Article  PubMed  CAS  Google Scholar 

  • Perez-Jimenez J et al (2010) Urinary metabolites as biomarkers of polyphenol intake in humans: a systematic review. Am J Clin Nutr 92(4):801–809

    Article  PubMed  CAS  Google Scholar 

  • Camu N, Winter TD, Addo SK et al (2008) Fermentation of cocoa beans: influence of microbial activities and polyphenol concentrations on the flavour of chocolate. J Sci Food Agric 88:2288–2297

    Article  CAS  Google Scholar 

  • Loke WM et al (2009) A metabolite profiling approach to identify biomarkers of flavonoid intake in humans. J Nutr 139(12):2309–2314

    Article  PubMed  CAS  Google Scholar 

  • Hug B et al (2006) Development of a gas-liquid chromatographic method for the analysis of fatty acid tryptamides in cocoa products. J Agric Food Chem 54(9):3199–3203

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasiruddin Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Khan, N., Nicod, N.M. (2012). Biomarkers of Cocoa Consumption. In: Conti, A., Paoletti, R., Poli, A., Visioli, F. (eds) Chocolate and Health. Springer, Milano. https://doi.org/10.1007/978-88-470-2038-2_3

Download citation

Publish with us

Policies and ethics