Skip to main content

In Vivo Imaging of Regenerated Tissue: State of Art and Future Perspectives

  • Chapter
Biotechnology in Surgery

Part of the book series: Updates in Surgery ((UPDATESSURG,volume 0))

  • 774 Accesses

Abstract

Mesenchymal stem cells (MSCs) are multipotent cells which can give rise to mesenchymal and nonmesenchymal tissues in vitro and in vivo [1]. The distribution of resident MSCs throughout the post-natal organism is mainly related to their existence in perivascular niches [2]. They can differentiate into osteogenic, adipogenic, chondrogenic, myocardial, or neural lineages when exposed to specific stimuli, making them attractive for tissue regeneration [3, 4]. Emerging evidence has shown that MSC transplantation offers a means to stimulate tissue repair either by direct (exogenous) or indirect (endogenous) cell replacement or angiogenesis [5, 6]. In fact, exogenous MSCs have shown the ability to support a paracrine activation of endogenous stem cells for tissue repair by secreting chemokines, as stromal derived factor-1 alpha (SDF-1α), and/or growth factors, as vascular endothelial growth factor. Despite the rapid research advancement, possible tissue repair by adult stem cell therapy is currently hampered in vivo by poor cell viability and delivery efficiency, uncertain differentiating fate, and therefore the use of this approach has raised a number of bioethical questions [7]. Hence, the strong need for more effective therapeutic approaches emphasizing the physiological plasticity of postnatal organs following an injury [8, 9], and more accurate imaging methods to allow a long-term in vivo monitoring of tissue regeneration [10]. Indeed, one of the most important accomplishments of modern physiology is the development of imaging techniques able to explore biochemical/molecular processes in the intact organism, i.e. in the absence of confounding effects inevitably caused by invasive procedures or ex vivo experimental prepar

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardo ME, Locatelli F, Fibbe WE (2009) Mesenchymal stromal cells. Ann N Y Acad Sci 1176:101–117

    Article  CAS  PubMed  Google Scholar 

  2. da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299

    Article  PubMed  Google Scholar 

  3. Benayahu D, Shefer G, Shur I (2009) Insights into chromatin remodelers in mesenchymal stem cells and differentiation. Front Biosci 14:398–409

    PubMed  Google Scholar 

  4. Ventura C, Cavallini C, Bianchi F et al (2008) Stem cells and cardiovascular repair: a role for natural and synthetic molecules harboring differentiating and paracrine logics. Cardiovasc Hematol Agents Med Chem 6:60–68

    Article  CAS  PubMed  Google Scholar 

  5. Anversa P, Leri A, Rota M et al (2007) Concise review: stem cells, myocardial regeneration, and methodological artifacts. Stem Cells 25:589–601

    Article  CAS  PubMed  Google Scholar 

  6. Gnecchi M, Zhang Z, Ni A et al (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  CAS  PubMed  Google Scholar 

  7. Hyun I (2010) The bioethics of stem cell research and therapy. J Clin Invest 120:71–75

    Article  CAS  PubMed  Google Scholar 

  8. Lionetti V, Cantoni S, Cavallini C et al (2010) Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation. J Biol Chem 285:9949–9961

    Article  CAS  PubMed  Google Scholar 

  9. Forini F, Lionetti V, Ardehali H et al (2010) Early long-term L-T3 replacement rescues mitochondria and prevents ischemic cardiac remodeling in rats. J Cell Mol Med doi: 10.1111/j.1582-4934.2010.01014

    Google Scholar 

  10. Lee Z, Dennis JE, Gerson SL (2008) Imaging stem cell implant for cellular-based therapies. Exp Biol Med (Maywood) 233:930–940

    Article  CAS  Google Scholar 

  11. Leong-Poi H (2009) Molecular imaging using contrast-enhanced ultrasound: evaluation of angiogenesis and cell therapy. Cardiovasc Res 84:190–200

    Article  CAS  PubMed  Google Scholar 

  12. Agrawal V, Johnson SA, Reing J et al (2010) Epimorphic regeneration approach to tissue replacement in adult mammals. Proc Natl Acad Sci U S A 107:3351–3355

    Article  CAS  PubMed  Google Scholar 

  13. Kilarski WW, Samolov B, Petersson L et al (2009) Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 15:657–664

    Article  CAS  PubMed  Google Scholar 

  14. Schröter G, Schneider-Eicke J, Schwaiger M (1994) Assessment of tissue viability with fluorine-18-fluoro-2-deoxyglucose (FDG) and carbon-11-acetate PET imaging. Herz 19:42–50

    PubMed  Google Scholar 

  15. Endo M, Yoshida K, Iinuma TA et al (1987) Noninvasive quantification of regional myocardial blood flow and ammonia extraction fraction using nitrogen-13 ammonia and positron emission tomography. Ann Nucl Med 1:1–6

    Article  CAS  PubMed  Google Scholar 

  16. Grierson JR, Shields AF (2000) Radiosynthesis of 3′-deoxy-3′-fluoro-thymidine: 18F-FLT for imaging cellular proliferation in vivo. Nucl Med Biol 27:143–156

    Article  CAS  PubMed  Google Scholar 

  17. Kendziorra K, Barthel H, Erbs S et al (2008) Effect of progenitor cells on myocardial perfusion and metabolism in patients after recanalization of a chronically occluded coronary artery. J Nucl Med 49:557–563

    Article  PubMed  Google Scholar 

  18. Jackson J, Chapon C, Jones W et al (2009) In vivo multimodal imaging of stem cell transplantation in a rodent model of Parkinson’s disease. J Neurosci Methods 183:141–148

    Article  PubMed  Google Scholar 

  19. Fuster V, Sanz J, Viles-Gonzalez JF et al (2006) The utility of magnetic resonance imaging in cardiac tissue regeneration trials. Nat Clin Pract Cardiovasc Med 1:S2–S7

    Article  Google Scholar 

  20. Watrin-Pinzano A, Ruaud JP, Cheli Y et al (2004) T2 mapping: an efficient MR quantitative technique to evaluate spontaneous cartilage repair in rat patella. Osteoarthritis Cartilage 12:191–200

    Article  CAS  PubMed  Google Scholar 

  21. Filippi M, Agosta F (2009) Magnetic resonance techniques to quantify tissue damage, tissue repair, and functional cortical reorganization in multiple sclerosis. Prog Brain Res 175:465–482

    Article  CAS  PubMed  Google Scholar 

  22. Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Article  CAS  PubMed  Google Scholar 

  23. Yen YF, Kohler SJ, Chen AP et al (2009) Imaging considerations for in vivo 13C metabolic mapping using hyperpolarized 13C-pyruvate. Magn Reson Med 62:1–10

    Article  CAS  PubMed  Google Scholar 

  24. Pichler BJ, Wehrl HF, Kolb A et al (2009) Positron emission tomography/ magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 38:199–208

    Article  Google Scholar 

  25. Hoffman JM, Gambhir SS (2007) Molecular imaging: the vision and opportunity for radiology in the future. Radiology 244:39–47

    Article  PubMed  Google Scholar 

  26. Cormode DP, Skajaa T, Fayad ZA et al (2009) Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 29:992–1000

    Article  CAS  PubMed  Google Scholar 

  27. Schroeder T (2008) Imaging stem-cell-driven regeneration in mammals. Nature 453:345–351

    Article  CAS  PubMed  Google Scholar 

  28. Serganova I, Mayer-Kukuck P, Huang R et al (2008) Molecular imaging: reporter gene imaging. Handb Exp Pharmacol (185 Pt 2):167–223

    Article  CAS  PubMed  Google Scholar 

  29. Lee SW, Padmanabhan P, Ray P et al (2009) Stem cell-mediated accelerated bone healing observed with in vivo molecular and small animal imaging technologies in a model of skeletal injury. J Orthop Res 27:295–302

    Article  PubMed  Google Scholar 

  30. Wang X, Mao X, Xie L et al (2009) Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. J Cereb Blood Flow Metab 29:1644–1654

    Article  PubMed  Google Scholar 

  31. Liu J, Cheng EC, Long RC et al (2009) Noninvasive monitoring of embryonic stem cells in vivo with MRI transgene reporter. Tissue Eng Part C Methods 15:739–747

    Article  CAS  PubMed  Google Scholar 

  32. Lionetti V, Paddeu S (2010) Towards ultrasound molecular imaging. In: Paradossi G, Pellegretti P, Trucco A (Eds.): Ultrasound contrast agents: targeting and processing methods for theranostics. Springer-Verlag Italia, Milan, pp 1–11

    Chapter  Google Scholar 

  33. Corot C, Robert P, Iée JM et al (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    Article  CAS  PubMed  Google Scholar 

  34. Lewin M, Carlesso N, Tung CH (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  CAS  PubMed  Google Scholar 

  35. Bulte JW, Douglas T, Witwer B (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    Article  CAS  PubMed  Google Scholar 

  36. Wang FH, Lee IH, Holmström N et al (2006) Magnetic resonance tracking of nanoparticle labelled neural stem cells in a rat’s spinal cord. Nanotechnology 17:191

    Google Scholar 

  37. Gilad AA, Ziv K, McMahon MT et al (2008) MRI reporter genes. J Nucl Med 49:1905–1908

    Article  CAS  PubMed  Google Scholar 

  38. Ki S, Sugihara F, Kasahara K et al (2006) A novel magnetic resonance-based method to measure gene expression in living cells. Nucleic Acids Res 34:e51

    Article  Google Scholar 

  39. Pawelczyk E, Frank JA (2008) Transferrin receptor expression in iron oxide-labeled mesenchymal stem cells. Radiology 247:913

    Article  PubMed  Google Scholar 

  40. Campan M, Lionetti V, Aquaro GD et al (2009) Stem cells transduction with ferritin as a reporter gene to track their fate by 1.5 Tesla MRI, in the beating heart. Circ Res 105:e62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag ItaliaSpringer-Verlag Italia 2011

About this chapter

Cite this chapter

Lionetti, V., Pingitore, A. (2011). In Vivo Imaging of Regenerated Tissue: State of Art and Future Perspectives. In: Barbarisi, A. (eds) Biotechnology in Surgery. Updates in Surgery, vol 0. Springer, Milano. https://doi.org/10.1007/978-88-470-1658-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1658-3_6

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1657-6

  • Online ISBN: 978-88-470-1658-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics