Skip to main content

Abstract

An abundance of astrophysical evidence indicates that the bulk of matter in the universe is made up of massive, electrically neutral particles that form the dark matter (DM). While the density of DM has been precisely measured, the identity of the DM particle (or particles) is a complete mystery. In fact, within the laws of physics as we know them (the Standard Model, or SM), none of the particles have the right properties to make up DM. Remarkably, many new physics extensions of the SM — designed to address theoretical issues with the electroweak symmetry breaking sector — require the introduction of new particles, some of which are excellent DM candidates. As the LHC era begins, there are high hopes that DM particles, along with their associated new matter states, will be produced in pp collisions. We discuss how the LHC experiments, along with other DM searches, may serve to determine the identity of DM particles and elucidate the associated physics. Most of our discussion centres around theories with weak-scale supersymmetry, and allows for several different DM candidate particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For reviews, see e.g. C. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267 (1996) 195; A. Lahanas, N. Mavromatos and D. Nanopoulos, Int. J. Mod. Phys. D 12 (2003) 1529; M. Drees, hep-ph/0410113; K. Olive, “Tasi Lectures on Astroparticle Physics”, astro-ph/0503065; G. Bertone, D. Hooper and J. Silk, Phys. Rept. 405 (2005) 279

    Article  ADS  Google Scholar 

  2. F. Zwicky, Helvetica Physica Acta 6 (1933) 110; see also Astrophys. J. 86 (1937) 217

    MATH  ADS  Google Scholar 

  3. V. Rubin and W. K. Ford, Astrophys. J. 159 (1970) 359; V. Rubin, N. Thonnard and W. K. Ford, Astrophys. J. 238 (1980) 471

    Article  ADS  Google Scholar 

  4. A. Conley et al. Astrophys. J. 644 (2006) 1

    Article  ADS  Google Scholar 

  5. D. N. Spergel et al. (WMAP Collaboration), Astrophys. J. Supp., 170 (2007) 377

    Article  ADS  Google Scholar 

  6. B. Lee and S. Weinberg, Phys. Rev. Lett. 39 (1977) 165

    Article  ADS  Google Scholar 

  7. A. Kusenko, Phys. Rev. Lett. 97 (2006) 241301

    Article  ADS  Google Scholar 

  8. P. Chen, Mod. Phys. Lett. A 19 (2004) 1047

    Article  MATH  ADS  Google Scholar 

  9. S. Coleman, Nucl. Phys. B 262 (1985) 263, [Erratumibid. B 269 (1986) 744

    Article  ADS  Google Scholar 

  10. A. Kusenko and M. Shaposhnikov, Phys. Lett. B 418 (1998) 46; A. Kusenko, V. Kuzmin and M. Shaposhnikov, Phys. Rev. Lett. 80 (1998) 3185

    Google Scholar 

  11. E. Kolb, D. Chung and A. Riotto, Phys. Rev. D 59 (1999) 023501 and hep-ph/9810361

    Google Scholar 

  12. R. Peccei and H. Quinn, Phys. Rev. Lett. 38 (1977) 1440 and Phys. Rev. D 16 (1977) 1791; S. Weinberg, Phys. Rev. Lett. 40 (1978) 223; F. Wilczek, Phys. Rev. Lett. 40 (1978) 279

    Article  ADS  Google Scholar 

  13. For a recent review, see e.g. S. J. Asztalos, L. Rosenberg, K. van Bibber, P. Sikivie and K. Zioutas, Ann. Rev. Nucl. Part. Sci. 56 (2006) 293

    Article  ADS  Google Scholar 

  14. For recent results, see L. Duffy et al., Phys. Rev. Lett. 95 (2005) 091304

    Article  ADS  Google Scholar 

  15. H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419; J. Ellis, J. Hagelin, D. Nanopoulos and M. Srednicki, Phys. Lett. B 127 (1983) 233; J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive and M. Srednicki, Nucl. Phys. B 238 (1984) 453

    Article  ADS  Google Scholar 

  16. G. Servant and T. Tait, New Jou. Phys. 4 (2002) 99

    Article  ADS  Google Scholar 

  17. For a review, see D. Hooper and S. Profumo, Phys. Rept. 453 (2007) 29

    Article  ADS  Google Scholar 

  18. N. Arkani-Hamed, A. Cohen and H. Georgi, Phys. Lett. B 513 (2001) 232; N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, J. High Energy Phys. 07 (2002) 034

    MATH  MathSciNet  Google Scholar 

  19. H. C. Cheng and I. Low, J. High Energy Phys. 0309 (2003) 051

    Article  ADS  Google Scholar 

  20. J. Hubisz and P. Meade, Phys. Rev. D 71 (2005) 035016

    ADS  Google Scholar 

  21. For reviews, see M. Schmaltz, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 and M. Perelstein, Prog. Part. Nucl. Phys. 58 (2007) 247

    Article  ADS  Google Scholar 

  22. C. Hill and R. Hill Phys. Rev. D 75 (2007) 115009

    Google Scholar 

  23. K. Jedamzik, M. LeMoine and G. Moultaka, JCAP 0607 (2006) 010

    ADS  Google Scholar 

  24. S. Heinemeyer, W. Holik, D. Stockinger, A. Weber and G. Weiglein, J. High Energy Phys. 0608 (2006) 052

    Article  ADS  Google Scholar 

  25. H. Baer and X. Tata, Weak Scale Supersymmetry: From Superfields to Scattering Events, (Cambridge University Press, 2006)

    Google Scholar 

  26. M. Drees, R. Godbole and P. Roy, Sparticles, (World Scientific, 2004)

    Google Scholar 

  27. P. Binétruy, Supersymmetry (Oxford, 2006)

    Google Scholar 

  28. S. Dimopoulos and H. Georgi, Nucl. Phys. B 193 (1981) 150

    Article  ADS  Google Scholar 

  29. B.C. Allanach, S. Kraml and W. Porod, J. High Energy Phys. 03 (2003) 016; G. Belanger, S. Kraml and A. Pukhov, Phys. Rev. D 72 (2005) 015003; S. Kraml and S. Sekmen in: Physics at TeV Colliders 2007, BSM working group report, in prep.; see http://cern.ch/kraml/comparison

    Article  ADS  Google Scholar 

  30. M. Dine, A. Nelson, Y. Nir and Y. Shirman, Phys. Rev. D 53 (1996) 2658; for a review, see G. Giudice and R. Rattazzi, Phys. Rept. 322 (1999) 419

    ADS  Google Scholar 

  31. L. Randall and R. Sundrum, Nucl. Phys. B 557 (1999) 79; G. Giudice, M. Luty, H. Murayama and R. Rattazzi, J. High Energy Phys. 9812 (1998) 027

    Google Scholar 

  32. S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, Phys. Rev. D 68 (2003) 046005; K. Choi, A. Falkowski, H. P. Nilles, M. Olechowski and S. Pokorski, J. High Energy Phys. 0411 (2004) 076; K. Choi, A. Falkowski, H. P. Nilles and M. Olechowski, Nucl. Phys. B 718 (2005) 113; K. Choi, K-S. Jeong and K. Okumura, J. High Energy Phys. 0509 (2005) 039; H. Baer, E. Park, X. Tata and T. Wang, J. High Energy Phys. 0706 (2007) 033, and references therein

    MathSciNet  ADS  Google Scholar 

  33. L. Everett, I.-W. Kim and K. Zurek, arXiv:0804:0592

    Google Scholar 

  34. P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke and E. A. Baltz, JCAP 0407 (2004) 008

    ADS  Google Scholar 

  35. G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 174 (2006) 577; Comput. Phys. Commun. 176 (2007) 367

    Article  ADS  MATH  Google Scholar 

  36. IsaRED, by H. Baer, C. Balazs and A. Belyaev, J. High Energy Phys. 0203 (2002) 042

    Article  MathSciNet  ADS  Google Scholar 

  37. ISAJET, by H. Baer, F. Paige, S. Protopopescu and X. Tata, hep-ph/0312045; see also H. Baer, J. Ferrandis, S. Kraml and W. Porod, Phys. Rev. D 73 (2006) 015010

    Google Scholar 

  38. H. Baer and M. Brhlik, Phys. Rev. D 53 (1996) 597; V. Barger and C. Kao, Phys. Rev. D 57 (1998) 3131

    ADS  Google Scholar 

  39. J. Ellis, T. Falk and K. Olive, Phys. Lett. B 444 (1998) 367; J. Ellis, T. Falk, K. Olive and M. Srednicki, Astropart. Phys. 13 (2000) 181; M.E. Gómez, G. Lazarides and C. Pallis, Phys. Rev. D 61 (2000) 123512 and Phys. Lett. B 487 (2000) 313; A. Lahanas, D. V. Nanopoulos and V. Spanos, Phys. Rev. D 62 (2000) 023515; R. Arnowitt, B. Dutta and Y. Santoso, Nucl. Phys. B 606 (2001) 59; see also Ref. [39]

    Google Scholar 

  40. K. L. Chan, U. Chattopadhyay and P. Nath, Phys. Rev. D 58 (1998) 096004; J. Feng, K. Matchev and T. Moroi, Phys. Rev. Lett. 84 (2000) 2322 and Phys. Rev. D 61 (2000) 075005; see also H. Baer, C. H. Chen, F. Paige and X. Tata, Phys. Rev. D 52 (1995) 2746 and Phys. Rev. D 53 (1996) 6241; H. Baer, C. H. Chen, M. Drees, F. Paige and X. Tata, Phys. Rev. D 59 (1999) 055014; for a model-independent approach, see H. Baer, T. Krupovnickas, S. Profumo and P. Ullio, J. High Energy Phys. 0510 (2005) 020

    Google Scholar 

  41. M. Drees and M. Nojiri, Phys. Rev. D 47 (1993) 376; H. Baer and M. Brhlik, Phys. Rev. D 57 (1998) 567; H. Baer, M. Brhlik, M. Diaz, J. Ferrandis, P. Mercadante, P. Quintana and X. Tata, Phys. Rev. D 63 (2001) 015007; J. Ellis, T. Falk, G. Ganis, K. Olive and M. Srednicki, Phys. Lett. B 510 (2001) 236; L. Roszkowski, R. Ruiz de Austri and T. Nihei, J. High Energy Phys. 0108 (2001) 024; A. Djouadi, M. Drees and J. L. Kneur, J. High Energy Phys. 0108 (2001) 055; A. Lahanas and V. Spanos, Eur. Phys. J. C 23 (2002) 185

    ADS  Google Scholar 

  42. R. Arnowitt and P. Nath, Phys. Rev. Lett. 70 (1993) 3696; H. Baer and M. Brhlik, Ref. [41]; A. Djouadi, M. Drees and J. Kneur, Phys. Lett. B 624 (2005) 60

    Article  ADS  Google Scholar 

  43. C. Böhm, A. Djouadi and M. Drees, Phys. Rev. D 30 (2000) 035012; J. R. Ellis, K. A. Olive and Y. Santoso, Astropart. Phys. 18 (2003) 395; J. Edsjö, et al., JCAP 0304 (2003) 001

    Google Scholar 

  44. H. Baer, A. Mustafayev, E. Park and X. Tata, JCAP0701, 017 (2007)

    Google Scholar 

  45. J. Angle et al., Phys. Rev. Lett. 100 (2008) 021303

    Google Scholar 

  46. D. Feldman, Z. Liu and P. Nath, Phys. Lett. B 662 (2008) 190

    Google Scholar 

  47. H. Baer, C. Balazs, A. Belyaev and J. O’Farrill, JCAP 0309, (2003) 007

    ADS  Google Scholar 

  48. R. Schnee, (CDMS Collaboration); A. M. Green, JCAP 0708 (2007) 022; C-L. Shan and M. Drees, arXiv:0710.4296 [hep-ph]

    Google Scholar 

  49. H. Baer, A. Belyaev, T. Krupovnickas and J. O’Farrill, JCAP 0408 (2004) 005

    ADS  Google Scholar 

  50. H. Baer and J. O’Farrill, JCAP0404, 005 (2004)

    Google Scholar 

  51. P. Sreekumar et al. [EGRET Collaboration], Astrophys. J. 494, 523 (1998) [arXiv:astro-ph/9709257]

    Article  ADS  Google Scholar 

  52. S. Weinberg, Phys. Rev. Lett. 48 (1982) 1303; R. H. Cyburt, J. Ellis, B. D. Fields and K. A. Olive, Phys. Rev. D 67 (2003) 103521; K. Jedamzik, Phys. Rev. D 70 (2004) 063524; M. Kawasaki, K. Kohri and T. Moroi, Phys. Lett. B 625 (2005) 7 and Phys. Rev. D 71 (2005) 083502. K. Kohri, T. Moroi and A. Yotsuyanagi, Phys. Rev. D 73 (2006) 123511

    Article  ADS  Google Scholar 

  53. H. Pagels and J. Primack, Phys. Rev. Lett. 48 (1982) 223; J. Feng, A. Rajaraman and F. Takayama, Phys. Rev. Lett. 91 (2003) 011302 and Phys. Rev. D 68 (2003) 085018

    Article  ADS  Google Scholar 

  54. M. Bolz, A. Brandenburg and W. Buchmuller, Nucl. Phys. B 606 (2001) 518; J. Pradler and F. Steffen, hepph/ 0608344

    Article  ADS  Google Scholar 

  55. J. Feng, S. Su and F. Takayama, Phys. Rev. D 70 (2004) 075019

    Google Scholar 

  56. W. Buchmuller, P. Di Bari and M. Plumacher, Annal. Phys. 315 (2005) 305

    Article  ADS  Google Scholar 

  57. W. Buchmuller, L. Covi, J. Kersten, K. Schmidt-Hoberg, JCAP0611 (2006) 007; W. Buchmuller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, J. High Energy Phys. 0703 (2007) 037

    Google Scholar 

  58. J. E. Kim and H. P. Nilles

    Google Scholar 

  59. L. Covi, J. E. Kim and L. Roszkowski, Phys. Rev. Lett. 82 (1999) 4180; L. Covi, H. B. Kim, J. E. Kim and L.Roszkowski, J. High Energy Phys. 0105 (2001) 033

    Article  ADS  Google Scholar 

  60. A. Brandenburg and F. Steffen, JCAP0408 (2004) 008

    Google Scholar 

  61. G. Lazarides and Q. Shafi, Phys. Lett. B 258 (1991) 305; K. Kumekawa, T. Moroi and T. Yanagida, Prog. Theor. Phys. 92 (1994) 437; T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Phys. Lett. B 464 (1999) 12

    Google Scholar 

  62. H. Baer, S. Kraml, S. Sekmen and H. Summy, JHEP0803, 056 (2008)

    Google Scholar 

  63. H. Baer and X. Tata, Phys. Lett. B 160 (1985) 159

    Google Scholar 

  64. H. Baer, J. Ellis, G. Gelmini, D. V. Nanopoulos and X. Tata, Phys. Lett. B 161 (1985) 175; G. Gamberini, Z. Physik C 30 (1986) 605; H. Baer, V. Barger, D. Karatas and X. Tata, Phys. Rev. D 36 (1987) 96; H. Baer, X. Tata and J. Woodside, Phys. Rev. D 45 (1992) 142

    Google Scholar 

  65. H. Baer, D. Dzialo-Karatas and X. Tata, Phys. Rev. D 42 (1990) 2259

    ADS  Google Scholar 

  66. H. Baer, C. H. Chen, F. Paige and X. Tata, Phys. Rev. D 50 (1994) 4508

    ADS  Google Scholar 

  67. H. Baer, C. H. Chen, F. Paige and X. Tata, Phys. Rev. D 49 (1994) 3283

    ADS  Google Scholar 

  68. H. E. Haber and D. Wyler, Nucl. Phys. B 323 (1989) 267; S. Ambrosanio and B. Mele, Phys. Rev. D 53 (1996) 2541 and Phys. Rev. D 55 (1997) 1399 [Erratumibid. D56, 3157 (1997)]; H. Baer and T. Krupovnickas, J. High Energy Phys. 0209 (2002) 038

    Article  ADS  Google Scholar 

  69. H. Baer and X. Tata, Phys. Rev. D 47 (1993) 2739

    ADS  Google Scholar 

  70. H. Baer, C. Chen, M. Drees, F. Paige and X. Tata, Phys. Rev. Lett. 79 (1997) 986

    Article  ADS  Google Scholar 

  71. H. Baer, C. Chen, M. Drees, F. Paige and X. Tata, Phys. Rev. D 59 (1999) 015010

    ADS  Google Scholar 

  72. H. Baer, M. Bisset, X. Tata and J. Woodside, Phys. Rev. D 46 (1992) 303

    ADS  Google Scholar 

  73. H. Baer, M. Bisset, D. Dicus, C. Kao and X. Tata, Phys. Rev. D 47 (1993) 1062; H. Baer, M. Bisset, C. Kao and X. Tata, Phys. Rev. D 50 (1994) 316 Dark Matter and the LHC 203

    ADS  Google Scholar 

  74. M. Muhlleitner, A. Djouadi and Y. Mambrini, Comput. Phys. Commun. 168 (2005) 46

    Article  ADS  Google Scholar 

  75. W. Porod, Comput. Phys. Commun. 153 (2003) 275

    Article  ADS  Google Scholar 

  76. T. Sjostrand, S. Mrenna and P. Skands, J. High Energy Phys. 0605 (2006) 026

    Article  ADS  Google Scholar 

  77. G. Corcella et al., J. High Energy Phys. 0101 (2001) 010

    Article  ADS  Google Scholar 

  78. F. Maltoni and T. Stelzer, J. High Energy Phys. 0302 (2003) 027; J. Alwall et al., J. High Energy Phys. 0709 (2007) 028

    Article  ADS  Google Scholar 

  79. J. Alwall et al., Comput. Phys. Commun. 176 (2007) 300

    Google Scholar 

  80. P. Mercadante, J. K. Mizukoshi and X. Tata, Phys. Rev. D 72 (2005) 035009; S. P. Das et al. arXiv:0708:2048 [hep-ph]; R. Kadala, P. Mercadante, J. K. Mizukoshi and X. Tata, arXiv:0803:0001 [hep-ph]

    ADS  Google Scholar 

  81. H. Baer, A. Belyaev, T. Krupovnickas and X. Tata, J. High Energy Phys. 0402 (2004) 007; H. Baer, T. Krupovnickas and X. Tata, J. High Energy Phys. 0406 (2004) 061

    Article  ADS  Google Scholar 

  82. H. Baer, H. Prosper and H. Summy, Phys. Rev. D 77 (2008) 055017

    ADS  Google Scholar 

  83. I. Hinchliffe et al., Phys. Rev. D 55 (1997) 5520 and Phys. Rev. D 60 (1999) 095002

    ADS  Google Scholar 

  84. H. Baer, K. Hagiwara and X. Tata, Phys. Rev. D 35 (1987) 1598; H. Baer, D. Dzialo-Karatas and X. Tata, Phys. Rev. D 42 (1990) 2259; H. Baer, C. Kao and X. Tata, Phys. Rev. D 48 (1993) 5175; H. Baer, C. H. Chen, F. Paige and X. Tata, Phys. Rev. D 50 (1994) 4508

    ADS  Google Scholar 

  85. R. Arnowitt et al. Phys. Lett. B 639 (2006) 46 and Phys. Lett. B 649 (2007) 73

    Google Scholar 

  86. H. Bachacou, I. Hinchliffe and F. Paige, Phys. Rev. D 62 (2000) 015009; Atlas Collaboration, LHCC 99-14/15

    ADS  Google Scholar 

  87. C. Lester and D Summers, Phys. Lett. B 463 (1999) 99; A. Barr, C. Lester and P. Stephens, J. Phys. bf G29 (2003) 2343; C. Lester and A. Barr, J. High Energy Phys. 0712 (2007) 102; W. Cho, K. Choi, Y. Kim and C. Park, arXiv:0711.4526

    Google Scholar 

  88. K. Kawagoe et al. Phys. Rev. D 69 (2004) 035003; S. Ambrosanio et al. J. High Energy Phys. 0101 (2001) 014

    ADS  Google Scholar 

  89. J. Feng et al. Phys. Rev. D 52 (1995) 1418; M. Nojiri, K. Fujii and T. Tsukamoto, Phys. Rev. D 54 (1996) 6756

    MathSciNet  ADS  Google Scholar 

  90. E. Baltz, M. Battaglia, M. Peskin and T. Wizansky, Phys. Rev. D 74 (2006) 103521. See also R. Arnowitt et al., arXiv:0802.2968 [hep-ph] for a similar study in the stau co-annihilation region

    Google Scholar 

  91. H. C. Cheng, K. Matchev and M. Schmaltz, Phys. Rev. D 66 (2002) 036005

    ADS  Google Scholar 

  92. T. Rizzo, Phys. Rev. D 64 (2001) 095010; C. Macescanu, C. McMullen and S. Nandi, Phys. Rev. D 66 (2002) 015009

    Google Scholar 

  93. See T. Tait, New Jou. Phys. 4 (2002) 99 Ref. [17]; K. Kong and K. Matchev, J. High Energy Phys. 0601 (2006) 038

    Article  ADS  Google Scholar 

  94. H. C. Cheng, K. Matchev and M. Schmaltz, Phys. Rev. D 66 (2002) 056006; A. Datta, K. Kong and K. Matchev, Phys. Rev. D 72 (2005) 096006

    ADS  Google Scholar 

  95. A. Alves, O. Eboli and T. Plehn, Phys. Rev. D 74 (2006) 095010

    Google Scholar 

  96. A. Birkedal, A Noble, M. Perelstein and A. Spray, Phys. Rev. D 74 (2006) 035002; D. Hooper and G. Zaharijas, Phys. Rev. D 75 (2007) 035010

    ADS  Google Scholar 

  97. C.-S. Chen, K. Cheung and T. C. Yuan, Phys. Lett. B 664 (2007) 158; T. Han, H. Logan and L.-T. Wang, J. High Energy Phys. 0601 (2006) 099

    Google Scholar 

  98. Z. Chacko, H-S. Goh and R. Harnik, Phys. Rev. Lett. 96 (2006) 231802; see E. Dolle and S. Su, Phys. Rev. D 77 (2008) 075013 for an analysis of DM in a twin-Higgs scenario

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Indian National Science Academy, New Delhi

About this chapter

Cite this chapter

Baer, H., Tata, X. (2009). Dark Matter and the LHC. In: Datta, A., et al. Physics at the Large Hadron Collider. Springer, New Delhi. https://doi.org/10.1007/978-81-8489-295-6_12

Download citation

Publish with us

Policies and ethics