Skip to main content

Molecular basis for specification of the vertebrate head field

  • Conference paper
Interface Oral Health Science 2009
  • 507 Accesses

Abstract

The network of regulatory factors involved in the development of the vertebrate head is an exquisitely tuned system of almost baroque complexity. During early embryogenesis, arrays of activating and inhibitory factors work to mold an initially unstructured clump of cells into an increasingly recognizable body with a distinct back, belly, head, and tail. The development of the head is enabled and guided by the activity of a region of cells called the organizer, which secretes inhibitors of multiple growth factor pathways that affect the axial orientation and germ layer formation of the embryo. In a sense, the organizer acts as a defense system against suppressors that frustrate the development of the nascent head. Here, I briefly discuss recent progress in understanding the molecular basis for specification of the head field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Robertis EM, Larrain J, Oelgeschlager M et al (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat Rev Genet 1:171–181

    Article  PubMed  Google Scholar 

  2. Stern CD (2006) Neural induction: 10 years on since the ‘default model’. Curr Opin Cell Biol 18:692–697

    Article  PubMed  Google Scholar 

  3. Niehrs C (2004) Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 5:425–434

    Article  PubMed  Google Scholar 

  4. Slack JM (2005) Essential developmental biology, 2nd edn. Wiley-Blackwell, New Jersey

    Google Scholar 

  5. Wolpert L, Smith J, Jessell T et al (2006) Principles of development, 3rd edn. Oxford University Press, Northants

    Google Scholar 

  6. Spemann H, Mangold H (2001) Induction of embryonic primordia by implantation of organizers from a different species. Int J Dev Biol 45:13–38 (Reprinted from Archiv Mikroskopische Anatomie Entwicklungsmechanik 100:599–638, 1924)

    PubMed  Google Scholar 

  7. Sasai Y, Lu B, Steinbeisser H et al (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790

    Article  PubMed  Google Scholar 

  8. Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70:829–840

    Article  PubMed  Google Scholar 

  9. Leyns L, Bouwmeester T, Kim SH et al (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88:747–756

    Article  PubMed  Google Scholar 

  10. Glinka A, Wu W, Delius H et al (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    Article  PubMed  Google Scholar 

  11. Meno C, Saijoh Y, Fujii H et al (1996) Left-right asymmetric expression of the TGF beta-family member lefty in mouse embryos. Nature 381:151–155

    Article  PubMed  Google Scholar 

  12. Bouwmeester T, Kim S, Sasai Y et al (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382:595–601

    Article  PubMed  Google Scholar 

  13. Piccolo S, Agius E, Leyns L et al (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710

    Article  PubMed  Google Scholar 

  14. Yamamoto A, Nagano T, Takehara S et al (2005) Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. Cell 120:223–235

    Article  PubMed  Google Scholar 

  15. Robb L, Tam PP (2004) Gastrula organiser and embryonic patterning in the mouse. Semin Cell Dev Biol 15:543–554

    Article  PubMed  Google Scholar 

  16. Beddington RS, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96:195–209

    Article  PubMed  Google Scholar 

  17. De Robertis EM, Kuroda H (2004) Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20:285–308

    Article  PubMed  Google Scholar 

  18. Kuroda H, Wessely O, De Robertis EM (2004) Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. PLoS Biol 2:E92

    Article  PubMed  Google Scholar 

  19. Khokha MK, Yeh J, Grammer TC et al (2005) Depletion of three BMP antagonists from Spemann’s organizer leads to a catastrophic loss of dorsal structures. Dev Cell 8:401–411

    Article  PubMed  Google Scholar 

  20. Bachiller D, Klingensmith J, Kemp C et al (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403:658–661

    Article  PubMed  Google Scholar 

  21. Kiecker C, Niehrs C (2001) A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128:4189–4201

    PubMed  Google Scholar 

  22. Mao B, Wu W, Li Y et al (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411:321–325

    Article  PubMed  Google Scholar 

  23. Mao BY, Wu W, Davidson G et al (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417:664–667

    Article  PubMed  Google Scholar 

  24. Kimelman D (2006) Mesoderm induction: from caps to chips. Nat Rev Genet 7:360–372

    Article  PubMed  Google Scholar 

  25. Thisse C, Thisse B (1999) Antivin, a novel and divergent member of the TGFbeta superfamily, negatively regulates mesoderm induction. Development 126:229–240

    PubMed  Google Scholar 

  26. Perea-Gomez A, Vella FD, Shawlot W et al (2002) Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell 3:745–756

    Article  PubMed  Google Scholar 

  27. Glinka A, Wu W, Onichtchouk D et al (1997) Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389:517–519

    Article  PubMed  Google Scholar 

  28. Barrantes ID, Davidson G, Grone HJ et al (2003) Dkk1 and noggin cooperate in mammalian head induction. Genes Dev 17:2239–2244

    Article  Google Scholar 

  29. Cox WG, Hemmati-Brivanlou A (1995) Caudalization of neural fate by tissue recombination and bFGF. Development 121:4349–4358

    PubMed  Google Scholar 

  30. Bottcher RT, Niehrs C (2005) Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 26:63–77

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihito Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this paper

Cite this paper

Yamamoto, A. (2010). Molecular basis for specification of the vertebrate head field. In: Sasano, T., Suzuki, O. (eds) Interface Oral Health Science 2009. Springer, Tokyo. https://doi.org/10.1007/978-4-431-99644-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-99644-6_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-99643-9

  • Online ISBN: 978-4-431-99644-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics