Skip to main content

Krüppel-like Factors KLF2, KLF4, and KLF5: Central Regulators of Smooth Muscle Function

  • Chapter
The Biology of Krüppel-like Factors

Abstract

The vascular smooth muscle cell (SMC) plays a vital role in mammalian physiology through its regulation of blood pressure via contraction and relaxation. In response to vascular injury, it is capable of rapidly and reversibly modulating its pheno-type to a cell type capable of performing a number of functions key to wound healing and vascular inflammation including migration, proliferation, matrix synthesis, chem-okine production, and protein synthesis. Recent work has identified three Krüppel-like factors—KLF2, KLF4, KLF5—as intricately involved in all of these processes. This review provides a brief overview of the role these factors play in regulating these and other key SMC functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam PJ, Regan CP, Hautmann MB, and Owens GK (2000) Positive- and negative-acting Kruppel-like transcription factors bind a transforming growth factor β control element required for expression of the smooth muscle cell differentiation marker SM22α in vivo. J. Biol Chem. 275:37798–37806

    Article  PubMed  CAS  Google Scholar 

  • Atkins GB, Wang Y, Mahabeleshwar GH, Shi H, Gao H, Kawanami D, Natesan V, Lin Z, Simon DI, and Jain MK (2008) Hemizygous Deficiency of Kruppel- Like Factor 2 Augments Experimental Atherosclerosis. Circ. Res. 103;690–693

    Article  PubMed  CAS  Google Scholar 

  • Autieri MV (2008) Kruppel-Like Factor 4: Transcriptional Regulator of Proliferation, or Inflammation, or Differentiation, or All Three? Circ Res 102:1455–1457

    Article  PubMed  CAS  Google Scholar 

  • Bafford R, Sui XX, Wang G, and Conte M (2006) Angiotensin II and tumor necrosis factor-α upregulate survivin and Kruppel-like factor 5 in smooth muscle cells: Potential relevance to vein graft hyperplasia. Surgery 140:289–296

    Article  PubMed  Google Scholar 

  • Buetow BS, Tappan KA, Crosby JR, Seifert RA, and Bowen-Pope DF (2003) Chimera Analysis Supports a Predominant Role of PDGFRβ in Promoting Smooth-Muscle Cell Chemotaxis after Arterial Injury. Am J Pathol 163:979–984

    PubMed  CAS  Google Scholar 

  • Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, and Cao Y (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9:604–613

    Article  PubMed  CAS  Google Scholar 

  • Chai Y, Jiang X, Ito Y, Bringas P, Jr., Han J, Rowitch DH, Soriano P, McMahon AP, and Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    PubMed  CAS  Google Scholar 

  • Das H, Kumar A, Lin Z, Patino WD, Hwang PM, Feinberg MW, Majumder PK, and Jain MK (2006) Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc. Natl. Acad. Sci. U.S.A 103:6653–6658

    Article  PubMed  CAS  Google Scholar 

  • de Martin R, Hoeth M, Hofer-Warbinek R, and Schmid JA (2000) The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol 20:83E–E88

    PubMed  Google Scholar 

  • Dekker RJ, van SS, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, and Horrevoets AJ (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100:1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Dekker RJ, Boon RA, Rondaij MG, Kragt A, Volger OL, Elderkamp YW, Meijers JCM, Voorberg J, Pannekoek H, and Horrevoets AJG (2006) KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood 107:4354–4363

    Article  PubMed  CAS  Google Scholar 

  • Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, and Parmacek MS (2003) Myocardin Is a Critical Serum Response Factor Cofactor in the Transcriptional Program Regulating Smooth Muscle Cell Differentiation. Mol. Cell. Biol. 23:2425–2437

    Article  PubMed  CAS  Google Scholar 

  • Feinberg MW, Cao Z, Wara AK, Lebedeva MA, SenBanerjee S, and Jain MK (2005) Kruppel-like Factor 4 Is a Mediator of Proinflammatory Signaling in Macrophages. J. Biol. Chem. 280:38247–38258

    Article  PubMed  CAS  Google Scholar 

  • Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, Lindblom P, Shani M, Zicha D, and Adams RH (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124:161–173

    Article  PubMed  CAS  Google Scholar 

  • Fujiu K, Manabe I, Ishihara A, Oishi Y, Iwata H, Nishimura G, Shindo T, Maemura K, Kagechika H, Shudo K, and Nagai R (2005) Synthetic Retinoid Am80 Suppresses Smooth Muscle Phenotypic Modulation and In-Stent Neointima Formation by Inhibiting KLF5. Circ. Res. 97:1132–1141

    Article  PubMed  CAS  Google Scholar 

  • Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, Feinberg MW, Gerszten RE, Edelman ER, and Jain MK (2007) Kruppel-like Factor 4 Regulates Endothelial Inflammation. J.Biol. Chem. 282:13769–13779

    Article  PubMed  CAS  Google Scholar 

  • Hoshino Y, Kurabayashi M, Kanda T, Hasegawa A, Sakamoto H, Okamoto Ei, Kowase K, Watanabe N, Manabe I, Suzuki T, Nakano A, Takase Si, Wilcox JN, and Nagai R (2000) Regulated expression of the BTEB2 transcription factor in vascular smooth muscle cells: Analysis of developmental and pathological expression profiles shows implications as a predictive factor for restenosis. Circulation 102:2528–2534

    PubMed  CAS  Google Scholar 

  • Huang J, Cheng L, Li J, Chen M, Zhou D, Lu MM, Proweller A, Epstein JA, and Parmacek MS (2008) Myocardin regulates expression of contractile genes in smooth muscle cells and is required for closure of the ductus arteriosus in mice. J. Clin. Invest 118:515–525

    PubMed  CAS  Google Scholar 

  • Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, and Ng HH (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10:353–360

    Article  PubMed  Google Scholar 

  • Kano MR, Morishita Y, Iwata C, Iwasaka S, Watabe T, Ouchi Y, Miyazono K, and Miyazawa K (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRβ signaling. J Cell Sci 118:3759–3768

    Article  PubMed  CAS  Google Scholar 

  • Katz JP, Perreault N, Goldstein BG, Lee CS, Labosky PA, Yang VW, and Kaestner KH (2002) The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129:2619–2628

    PubMed  CAS  Google Scholar 

  • Kawai-Kowase K, Kurabayashi M, Hoshino Y, Ohyama Y, and Nagai R (1999) Transcriptional Activation of the Zinc Finger Transcription Factor BTEB2 Gene by Egr-1 Through Mitogen-Activated Protein Kinase Pathways in Vascular Smooth Muscle Cells. Circ Res 85:787–795

    PubMed  CAS  Google Scholar 

  • Kawai-Kowase K and Owens GK (2007) Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 292:C59–C69

    Article  PubMed  CAS  Google Scholar 

  • Knipp BS, Ailawadi G, Ford JW, Peterson DA, Eagleton MJ, Roelofs KJ, Hannawa KK, Deogracias MP, Ji B, Logsdon C, Graziano KD, Simeone DM, Thompson RW, Henke PK, Stanley JC, and Upchurch GR, Jr. (2004) Increased MMP-9 expression and activity by aortic smooth muscle cells after nitric oxide synthase inhibition is associated with increased nuclear factor-kappaB and activator protein-1 activity. J. Surg. Res. 116:70–80

    Article  PubMed  CAS  Google Scholar 

  • Kozaki K, Kaminski WE, Tang J, Hollenbach S, Lindahl P, Sullivan C, Yu JC, Abe K, Martin PJ, Ross R, Betsholtz C, Giese NA, and Raines EW (2002) Blockade of Platelet-Derived Growth Factor or Its Receptors Transiently Delays but Does Not Prevent Fibrous Cap Formation in ApoE Null Mice. Am J Pathol 161:1395–1407

    PubMed  CAS  Google Scholar 

  • Kumekawa M, Fukuda G, Shimizu S, Konno K, and Odawara M (2008) Inhibition of monocyte chemoattractant protein-1 by Kruppel-like factor 5 small interfering RNA in the tumor necrosis factor-α-activated human umbilical vein endothelial cells. Biol Pharm. Bull. 31:1609–1613

    Article  PubMed  CAS  Google Scholar 

  • Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, and Leiden JM (1997) The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 11:2996–3006

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Yu Q, Shin JT, Sebzda E, Bertozzi C, Chen M, Mericko P, Stadtfeld M, Zhou D, Cheng L, Graf T, MacRae CA, Lepore JJ, Lo CW, and Kahn ML (2006) Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Developmental Cell 11:845–857

    Article  PubMed  CAS  Google Scholar 

  • Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, and Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 8:1875–1887

    Article  PubMed  CAS  Google Scholar 

  • Li L, Miano JM, Cserjesi P, and Olson EN (1996) SM22α, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ. Res. 78:188–195

    PubMed  CAS  Google Scholar 

  • Lindahl P, Johansson BR, Leveen P, and Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Sinha S, McDonald OG, Shang Y, Hoofnagle MH, and Owens GK (2005) Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J. Biol. Chem. 280:9719–9727

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Sinha S, and Owens G (2003) A Transforming Growth Factor-β Control element required for SM α-actin expression in vivo also partially mediates GKLF-dependent transcriptional repression. J.Biol.Chem. 278:48004–48011

    Article  PubMed  CAS  Google Scholar 

  • Loppnow H, Werdan K, and Buerke M (2008) Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms. Innate. Immun. 14:63–87

    Article  PubMed  CAS  Google Scholar 

  • Marumo T, Schini-Kerth VB, Fisslthaler B, and Busse R (1997) Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-κB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 96:2361–2367

    PubMed  CAS  Google Scholar 

  • Matsumura T, Suzuki T, Aizawa K, Munemasa Y, Muto S, Horikoshi M, and Nagai R (2005) The Deacetylase HDAC1 Negatively Regulates the Cardiovascular Transcription Factor Kruppel-like Factor 5 through Direct Interaction. J. Biol. Chem. 280:12123–12129

    Article  PubMed  CAS  Google Scholar 

  • McDonald OG and Owens GK (2007) Programming smooth muscle plasticity with chromatin dynamics. Circ. Res. 100:1428–1441

    Article  PubMed  CAS  Google Scholar 

  • McDonald OG, Wamhoff BR, Hoofnagle MH, and Owens GK (2006) Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. Journal of Clinical Investigation. 116(1):36–48

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Suzuki T, Muto S, Aizawa K, Kimura A, Mizuno Y, Nagino T, Imai Y, Adachi N, Horikoshi M, and Nagai R (2003) Positive and Negative Regulation of the Cardiovascular Transcription Factor KLF5 by p300 and the Oncogenic Regulator SET through Interaction and Acetylation on the DNA-Binding Domain. Mol. Cell. Biol. 23:8528–8541

    Article  PubMed  CAS  Google Scholar 

  • Pidkovka NA, Cherepanova OA, Yoshida T, Alexander MR, Deaton RA, Thomas JA, Leitinger N, and Owens GK (2007) Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ. Res. 101:792–801

    Article  PubMed  CAS  Google Scholar 

  • Rong JX, Shapiro M, Trogan E, and Fisher EA (2003) Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc. Natl. Acad. Sci. U.S.A 100:13531–13536

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Sudo T, Yokode M, Murayama T, Kataoka H, Takakura N, Nishikawa S, Nishikawa SI, and Kita T (2001) Functional blockade of platelet-derived growth factor receptor-β but not of receptor-α prevents vascular smooth muscle cell accumulation in fibrous cap lesions in Apolipoprotein E-deficient mice. Circulation 103:2955–2960

    PubMed  CAS  Google Scholar 

  • Segre JA, Bauer C, and Fuchs E (1999) Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat. Genet. 22:356–360

    Article  PubMed  CAS  Google Scholar 

  • SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone MA, Jr., Garcia-Cardena G, and Jain MK (2004) KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med. 199:1305–1315

    Article  PubMed  CAS  Google Scholar 

  • Shindo T, Manabe I, Fukushima Y, Tobe K, Aizawa K, Miyamoto S, Kawai-Kowase K, Moriyama N, Imai Y, Kawakami H, Nishimatsu H, Ishikawa T, Suzuki T, Morita H, Maemura K, Sata M, Hirata Y, Komukai M, Kagechika H, Kadowaki T, Kurabayashi M, and Nagai R (2002) Kruppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nat Med 8:856–863

    PubMed  CAS  Google Scholar 

  • Shinoda Y, Ogata N, Higashikawa A, Manabe I, Shindo T, Yamada T, Kugimiya F, Ikeda T, Kawamura N, Kawasaki Y, Tsushima K, Takeda N, Nagai R, Hoshi K, Nakamura K, Chung Ui, and Kawaguchi H (2008) Kruppel-like factor 5 causes cartilage degradation through trans-activation of matrix metalloproteinase 9. J. Biol. Chem. 283:24682–24689

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA, Deaton RA, Hastings NE, Shang Y, Moehle CW, Eriksson UJ, Topouzis S, Wamhoff BR, Blackman BR, and Owens GK (2008) PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerotic-prone flow patterns. Am. J. Physiol Heart Circ. Physiol 296:H442–H452

    Article  PubMed  Google Scholar 

  • Wang Z, Wang DZ, Pipes GC, and Olson EN (2003) Myocardin is a master regulator of smooth muscle gene expression. Proc. Natl. Acad. Sci. U.S.A 100:7129–7134

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Bohanan CS, Neumann JC, and Lingrel JB (2008) KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. J. Biol. Chem. 283:3942–3950

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Gan Q, and Owens GK (2008a) Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am. J. Physiol. Cell Physiol. 295:1175–C1182

    Article  CAS  Google Scholar 

  • Yoshida T, Gan Q, Shang Y, and Owens GK (2007) Platelet-derived growth factor-BB represses smooth muscle cell marker genes via changes in binding of MKL factors and histone deacety-lases to their promoters. Am. J. Physiol. Cell Physiol. 292:C886–C895

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Kaestner KH, and Owens GK (2008b) Conditional deletion of kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointi-mal formation following vascular injury. Circ. Res. 102:1548–1557

    Article  CAS  Google Scholar 

  • Yoshida T, Sinha S, Dandre F, Wamhoff BR, Hoofnagle MH, Kremer BE, Wang DZ, Olson EN, and Owens GK (2003) Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Circ. Res. 92:856–864

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Moehle, C.W., Owens, G.K. (2009). Krüppel-like Factors KLF2, KLF4, and KLF5: Central Regulators of Smooth Muscle Function. In: Nagai, R., Friedman, S.L., Kasuga, M. (eds) The Biology of Krüppel-like Factors. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87775-2_15

Download citation

Publish with us

Policies and ethics