Skip to main content

Evaluation and analysis of brain attack using MR functional imaging

  • Chapter
Strategic Medical Science Against Brain Attack

Summary

Recent advances in magnetic resonance (MR) have made possible not only anatomical but functional mapping of the brain. The advantages of functional mapping with MRI are that the procedure is non-invasive, gives high temporal and spatial resolution, and makes use of equipment widely in the clinic. We introduce several new methods of detecting stroke lesions and evaluating the pathophysiology of cerebral ischemic disorders using a clinical 1.5T and an experimental 4.7T MR apparatus, including 1) a MR diffusion technique to detect acute stroke, 2) a MR perfusion technique to evaluate stroke areas using both spin labeling and Gd-dynamic susceptibility methods, 3) the basic and clinical application of fMRI, 4) activity-induced manganese (AIM) MRI for functional mapping and detecting acute ischemic lesions in experimental animals, and 5) multi-slice MR spectroscopic imaging to observe brain metabolites of cerebral ischemia and brain tumors. We emphasize that MR functional mapping of the brain has excellent potential for detecting acute stroke lesions and evaluating cerebral perfusion, cerebral function, and cerebral metabolism in clinical fields. Moreover, these methods should be useful for analyzing the pathophysiolgy of ischemic brain, especially when determining the therapeutic time window in acute cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moseley ME, Cohen Y, Mintorovitch J, et al (1990) Early detection of regional cerebral ischemia in cats: Comparison of diffusion- and T2- weighted MRI and spectroscopy. Magn Reson Med 14: 330–346

    Article  PubMed  CAS  Google Scholar 

  2. Moseley ME, Kucharczyk J, Mintorovitch J, et al (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR 11: 423–429

    PubMed  CAS  Google Scholar 

  3. Knight RA, Ordidge RJ, Helpern JA, et al (1991) Temporal evolution of ischemic damage in rat brain measured by proton NMR. Stroke 22: 802–808

    Article  PubMed  CAS  Google Scholar 

  4. Chien D, Buxton RB, Kwong KK, et al (1990) MR diffusion imaging of the human brain. J Comput Assist Tomogr 14: 514–520

    Article  PubMed  CAS  Google Scholar 

  5. Warach S, Chien D, Li W, et al (1992) Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42: 1717–1723

    PubMed  CAS  Google Scholar 

  6. Sorensen AG, Buonanno FS, Gonzalez RG, et al (1996) Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 199: 391–401

    PubMed  CAS  Google Scholar 

  7. Marks MP, de Crespigny A, Lentz D, et al (1996) Acute and chronic stroke: navigated spin-echo diffusion-weighted MR imaging. Radiology 199: 403–408

    PubMed  CAS  Google Scholar 

  8. Ebisu T, Katsuda K, Fujikawa A, et al (2001) Early and delayed neuroprotective effects of FK506 on experimental focal ischemia quantitatively assessed by diffusion-weighted MRI. Mag Reson Imaging, 19: 153–160

    Article  CAS  Google Scholar 

  9. Bradley WG (1993) MR appearance of hemorrhage in the brain. Radiology 189:15–26

    PubMed  Google Scholar 

  10. Gomori JM, Grossman RI, Goldberg HI, et al (1985) Intracranial hematomas: imaging by high field MR. Radiology 157: 87–92

    PubMed  CAS  Google Scholar 

  11. Clark RA, Watanabe AT, Bradley WG, et al (1990) Acute hematomas: effect of deoxyhemoglobin, hematocrit, and fibrin-clot formation and retraction on T2 shortening. Radiology 174: 201–206

    Google Scholar 

  12. Hayman LA, McArdle C, Taber KH, et al (1989) MR imaging of hyperacute intracranial hemorrhage in the cat. AJNR 10: 681–686

    PubMed  CAS  Google Scholar 

  13. Kaibara M. (1996) Rheology of blood coagulation. Biorheology 33:101–117

    Article  PubMed  CAS  Google Scholar 

  14. Rapoport S, Sostman HD, Pope C, et al (1987) Venous clots: evaluation with MR imaging. Radiology 162: 527–530

    PubMed  CAS  Google Scholar 

  15. Edelman RR, Wielopoloski P, Schmitt F (1994) Echo-planar MR imaging. Radiology 192: 600–612

    PubMed  CAS  Google Scholar 

  16. Thulborn KR, McKee A, Kowall NW, et al (1990) Role of ferritin and hemosiderin in the MR appearance of cerebral hemosiderin in the MR appearance of cerebral hemorrhage: a histopathologic biochemical study in rats. AJNR 11: 291–297

    PubMed  CAS  Google Scholar 

  17. Ebisu T, Tanaka C, Umeda M, et al (1996) Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging. Magn Reson Imaging 14: 1113–1116

    Article  PubMed  CAS  Google Scholar 

  18. Ebisu T, Tanaka C, Umeda M, et al (1997) Hemorrhagic and nonhemorrhagic stroke: Diagnosis with diffusion-weighted and T2-weighted echo-planar MR imaging. Radiology 203:823–82

    PubMed  CAS  Google Scholar 

  19. Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternation inversion recovery (FAIR) technique: application to functional mapping. Magn. Reson. Med. 34:293–301

    Article  PubMed  CAS  Google Scholar 

  20. Edelman RR, Siewert B, Darby DG, et al (1994) Quantitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 192:513–520

    PubMed  CAS  Google Scholar 

  21. Zhang W, Williams DS, Koretsky AP (1993) Meausurement of rat brain perfusion by NMR using spin labeling of arterial water: In vivo determination of the degree of spin labeling. Magn. Reson. Med. 29:416–421

    Article  PubMed  CAS  Google Scholar 

  22. Kwong KK, Chesler DA, Weisskoff RM, et al (1995) MR perfusion studies with T1-weighted echo planar imaging. Magn. Reson. Med. 34:878–887

    Article  PubMed  CAS  Google Scholar 

  23. Rosen BR, Belliveau JW, Chien D (1989) Perfusion imaging by nuclear magnetic resonance. Magn Reson Med 5:263–281

    CAS  Google Scholar 

  24. Weisskoff RM, Chesler D, Boxerman JL, et al (1993) Pitfalls in MR measurement of tissue blood flow with intravenous tracers;which mean transient time? Magn. Reson. Med. 29:553–559

    Article  PubMed  CAS  Google Scholar 

  25. Belliveau JW, Kennedy DN Jr, Mckinstry RC, et al (1991) Functional mapping of the humanvisual cortex by magnetic resonance imaging. Science 254: 716–719

    Article  PubMed  CAS  Google Scholar 

  26. Ogawa S, Tank DW, Menon R, et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89: 5951–5955

    Article  PubMed  CAS  Google Scholar 

  27. Ogawa S, Lee TM, Nayak AS et al (1990) Oxygen sensitive contrast in MRI in rodent brain at high magnetic fields. Magn Reson Med 14: 68–78

    Article  PubMed  CAS  Google Scholar 

  28. Fox P, Raichle ME, Focal (1986) physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad USA 83:1140–1144

    Article  CAS  Google Scholar 

  29. Fox PT, Raichle ME, Mintun MA et al (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241: 462–464

    Article  PubMed  CAS  Google Scholar 

  30. Hammeke TA, Yetkin FZ, Mueller WM, et al (1994) Functional magnetic resonance imaging of somatosensory stimulation. Neurosurgery 35: 677–681

    Article  PubMed  CAS  Google Scholar 

  31. Mueller WM, Zetkin FY, Hammeke TA, et al (1996) Functional MRI mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39: 515–520

    PubMed  CAS  Google Scholar 

  32. Yetkin FZ, Mueller WM, Morris GL, et al (1997) Functional MR activation correlated with intraoperative cortical mapping. AJNR 18: 1311–1315

    PubMed  CAS  Google Scholar 

  33. Binder JR, Swanson S, Hammecke T, et al (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46: 978–984

    PubMed  CAS  Google Scholar 

  34. Sobel DF, Gallen CC, Schwartz BJ, et al (1993) Locating the central sulcus: comparison of MR anatomic and MEG functional methods. AJNR 14: 915–926

    PubMed  CAS  Google Scholar 

  35. Maldjian J, Atlas SW, Howard RS, et al (1996) Functional magnetic resonance imaging of regional brain activity in patients with intraverebral arteriovenous malformations before surgical or endovascular therapy. J Neurosurg 84: 477–483

    Article  PubMed  CAS  Google Scholar 

  36. Tanaka C, Fukunaga M, Ebisu T, et al (1999) Clinical application of functional MRI. In: Yoshimoto T, Kotani M, Skuriki S, Karibe H, and Nakasato N (Eds.): Recent advances in biomagnetism, Tohoku University Press, Sendai, pp. 868–871

    Google Scholar 

  37. Lin YJ, Koretsky AP (1997) Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 38:378–88

    Article  PubMed  CAS  Google Scholar 

  38. Hunter DR, Komai H, Haworth RA et al (1980) Comparison of Ca2+, Sr2+, and Mn2+ fluxes in mitochondria of the perfused rat heart. Circ Res 47:721–217

    PubMed  CAS  Google Scholar 

  39. Shibuya I, Douglas WW (1993) Indications from Mn-quenching of Fura-2 fluorescence in melanotrophs that dopamine and baclofen close Ca channels that are spontaneously open but not those opened by high [K+]O; and that Cd preferentially blocks the latter. Cell Calcium 14:33–44

    Article  PubMed  CAS  Google Scholar 

  40. Drapeau P, Nachshen DA (1984) Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain. J Physiol 348:493–510

    PubMed  CAS  Google Scholar 

  41. Narita K, Kawasaki F, Kita H (1990) Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. BrainRes 510:289–295

    CAS  Google Scholar 

  42. Luyten PR, Marien AJH, Heindel W, et al (1990) Metabolic imaging of patients with intracranial tumors; 1H-MR spectroscopic imaging and PET. Radiology 176:791–799

    PubMed  CAS  Google Scholar 

  43. Naruse S, Furuya S, Tanaka C (1996) Functional MRI and magnetic resonance spectroscopy with clinical MRI scanners. In I. Hashimoto, Y.C. Okada & S. Ogawa (Eds): Visualization of Information Processing in the Human Brain; Recent advances in MEG and Functional MRI, Elsevier Science B.V., Amsterdam, pp. 317–330

    Google Scholar 

  44. Duyn JH, Gillen J, Sobering G, et al (1993) Multisection proton spectroscopic imaging of the brain. Radiology 188:277–282

    PubMed  CAS  Google Scholar 

  45. Takegami T, Ebisu T, Bito Y, et al (2001) Mismatch between lactate and the apparent diffusion coeficient of water in progressive focal ischemia. NMR Biomed. 14: 5–11

    Article  PubMed  CAS  Google Scholar 

  46. Bruhn H, Frahm J, Gyngell ML, et al (1989) Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172:541–548

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Tanaka, C. et al. (2002). Evaluation and analysis of brain attack using MR functional imaging. In: Kikuchi, H. (eds) Strategic Medical Science Against Brain Attack. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68430-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68430-5_18

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68432-9

  • Online ISBN: 978-4-431-68430-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics