Skip to main content

Antiviral MicroRNA

  • Conference paper
  • First Online:
Chembiomolecular Science
  • 1266 Accesses

Abstract

Host responses to viral infection are critical for controlling viral replication and subsequent viral eradication. In plants and invertebrates, RNA interference is the major antiviral response; that is, the viral double-stranded RNA (dsRNA) produced during the viral replication cycle triggers a series of events leading to the selective degradation of the target viral RNA in a nucleotide sequence-specific manner [1–3]. In mammals, two immune responses, innate and adaptive immunity, are critical for protecting against viral infections. In innate immunity, the interferon (IFN) system is activated within hours of viral infection and contributes to the direct inhibition of viral replication and promotes the activation of antigen-specific acquired immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baulcombe D (2004) RNA silencing in plants. Nature (Lond) 431:356–363

    Article  CAS  Google Scholar 

  2. Takaoka A, Yanai H (2006) Interferon signalling network in innate defence. Cell Microbiol 8:907–922

    Article  PubMed  CAS  Google Scholar 

  3. Vaucheret H, Beclin C, Fagard M (2001) Post-transcriptional gene silencing in plants. J Cell Sci 114:3083–3091

    PubMed  CAS  Google Scholar 

  4. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  5. Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, Hiiragi A, Dermody TS, Fujita T, Akira S (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205:1601–1610

    Article  PubMed  CAS  Google Scholar 

  6. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988

    Article  PubMed  CAS  Google Scholar 

  7. Kumar H, Kawai T, Kato H, Sato S, Takahashi K, Coban C, Yamamoto M, Uematsu S, Ishii KJ, Takeuchi O et al (2006) Essential role of IPS-1 in innate immune responses against RNA viruses. J Exp Med 203:1795–1803

    Article  PubMed  CAS  Google Scholar 

  8. Potter JA, Randall RE, Taylor GL (2008) Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain. BMC Struct Biol 8:11

    Article  PubMed  Google Scholar 

  9. Shingai M, Ebihara T, Begum NA, Kato A, Honma T, Matsumoto K, Saito H, Ogura H, Matsumoto M, Seya T (2007) Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus. J Immunol 179:6123–6133

    PubMed  CAS  Google Scholar 

  10. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803

    Article  PubMed  CAS  Google Scholar 

  11. Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336

    Article  PubMed  CAS  Google Scholar 

  12. Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919–922

    Article  PubMed  CAS  Google Scholar 

  13. Henke JI, Goergen D, Zheng J, Song Y, Schuttler CG, Fehr C, Junemann C, Niepmann M (2008) microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27: 3300–3310

    Article  PubMed  CAS  Google Scholar 

  14. Jopling CL (2008) Regulation of hepatitis C virus by microRNA-122. Biochem Soc Trans 36:1220–1223

    Article  PubMed  CAS  Google Scholar 

  15. Sarasin-Filipowicz M, Krol J, Markiewicz I, Heim MH, Filipowicz W (2009) Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy. Nat Med 15:31–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Uehara Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this paper

Cite this paper

Ouda, R., Fujita, T. (2012). Antiviral MicroRNA. In: Shibasaki, M., Iino, M., Osada, H. (eds) Chembiomolecular Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54038-0_20

Download citation

Publish with us

Policies and ethics