Skip to main content

Pollination Efficiencies of Insects Visiting Magnolia obovata, as Determined by Single-Pollen Genotyping

  • Chapter
Single-Pollen Genotyping

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

  • 804 Accesses

Abstract

The genetic composition of pollen grains that are transported to flowers affects the reproductive success and fitness of the plants and the genetic structure of the plant population. For example, for plants that suffer inbreeding depression, the pollen from another conspecific individual is essential for effective reproduction. Many researchers have focused on the pollination processes in various plants and have sought to understand relationships between plants and pollinators. Here, we show the latest approach, which evaluates the contribution of flower-visiting insects by direct genotyping of pollen grains. The genotypes of pollen grains adhering to flower beetles, small beetles, and bumblebees that visited flowers of Magnolia obovata were determined directly. The genetic traits of transported pollen differed by insect type. Most of the pollen adhering to small beetles and bumblebees was self-pollen (pollen transported to a different region on the same tree). On the other hand, an average of 70% of pollen grains adhering to flower beetles was transported from other reproductive trees. We also described the patterns of pollen movements by performing a paternity analysis on pollen grains using trees in our study populations as candidate male parents. Although most of the pollen that adhered to small beetles and bumblebees was moved within a short range of distance, pollen grains that adhered to flower beetles tended to travel longer distances. Our results showed that small beetles and bumblebees rarely move between plants, cause geitonogamous pollen flow, and may negatively affect reproduction in M. obovata, which undergoes substantial inbreeding depression in the early life stages. In contrast, flower beetles contribute to the outcrossing of M. obovata, transporting genetically diverse outcross pollen. Our evaluation is consistent with the traditional idea that the flowers of Magnoliaceae have features of a beetle pollination syndrome. The direct genotyping of pollen grains provides powerful evidence for the traditional idea of pollination syndrome and offers new insights, shedding light on the mutualism and coevolution of plants and flower visitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler LS, Irwin RE (2006) Comparison of pollen transfer dynamics by multiple floral visitors: experiments with pollen and fluorescent dye. Ann Bot 97:141–150

    Article  PubMed  Google Scholar 

  • Barrett SCH (2003) Mating strategies in flowering plants: the outcrossing–selfing paradigm and beyond. Philos Trans R Soc Lond 358:991–1004

    Article  Google Scholar 

  • Bernhardt P (2000) Convergent evolution and adaptive radiation of beetle-pollinated angiosperms. Plant Syst Evol 222:293–320

    Article  Google Scholar 

  • Bittencourt JM, Sebbenn AM (2008) Pollen movement within a continuous forest of wind-pollinated Araucaria angustifolia, inferred from paternity and TWOGENER analysis. Conserv Genet 9:855–868

    Article  Google Scholar 

  • Campbell DR (1998) Multiple paternity in fruits of Ipomopsis aggregata (Polemoniaceae). Am J Bot 85:1022–1027

    Article  Google Scholar 

  • Carneiro FS, Degen B, Kanashiro M, de Lacerda AEB, Sebbenn AM (2009) High levels of pollen dispersal detected through paternity analysis from a continuous Symphonia globulifera population in the Brazilian Amazon. For Ecol Manag 258:1260–1266

    Article  Google Scholar 

  • Colwell RN (1951) The use of radioactive isotopes in determining spore distribution patterns. Am J Bot 38:511–523

    Article  Google Scholar 

  • Crepet WL, Friis EM (1987) The evolution of insect pollination in angiosperms. In: Friis EM, Chaloner WG, Crane PR (eds) The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge

    Google Scholar 

  • Darvill B, Knight ME, Goulson D (2004) Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos 107:471–478

    Article  Google Scholar 

  • Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764

    Article  PubMed  Google Scholar 

  • Diels L (1916) Kaferblumen bei den Ranales und ihre Bedeutung für die Phylogenese der Angiospermen. Ber Dtsch Bot Ges 34:758–774

    Google Scholar 

  • Dieringer G, Cabrera RL, Lara M, Loya L, Reyes-Castillo P (1999) Beetle pollination and floral thermogenicity in Magnolia tamaulipana (Magnoliaceae). Int J Plant Sci 160:64–71

    Article  Google Scholar 

  • Dramstad WE (1996) Do bumblebees (Hymenoptera: Apidae) really forage close to their nests? J Insect Behav 9:163–182

    Article  Google Scholar 

  • Elliott SE, Irwin RE (2009) Effects of flowering plant density on pollinator visitation, pollen receipt, and seed production in Delphinium barbeyi (Ranunculaceae). Am J Bot 96:912–919

    Article  Google Scholar 

  • Englund R (1993) Movement patterns of Cetonia beetles (Searabaeidae) among flowering Viburnum opulus (Caprifoliaceae). Option for long-distance pollen dispersal in a temperate shrub. Oecologia (Berl) 94:295–302

    Article  Google Scholar 

  • Faegri K, van der Pijl L (1971) The principles of pollination ecology, 2nd edn. Pergamon, Oxford

    Google Scholar 

  • Gaudreau MM, Hardin JW (1974) The use of neutron activation analysis in pollination ecology. Brittonia 26:316–320

    Article  Google Scholar 

  • Gibernau M, Barabé D, Cerdan P, Dejean A (1999) Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. Int J Plant Sci 160:1135–1143

    Article  PubMed  Google Scholar 

  • Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst 36:47–79

    Article  Google Scholar 

  • Gottsberger G (1999) Pollination and evolution in neotropical Annonaceae. Plant Species Biol 14:143–152

    Article  Google Scholar 

  • Haas F, Beutel RG (2001) Wing folding and the functional morphology of the wing base in Coleoptera. Zoology 104:123–141

    Article  CAS  PubMed  Google Scholar 

  • Havens K, Delph LF (1996) Differential seed maturation uncouples fertilization and siring success in Oenothera organensis (Onagraceae). Heredity 76:623–632

    Article  Google Scholar 

  • Herrera CM (1987) Components of pollinator “quality”: comparative analysis of a diverse insect assemblage. Oikos 50:79–90

    Article  Google Scholar 

  • Hudson LC, Chamberlain D, Stewart CN Jr (2001) GFP-tagged pollen to monitor pollen flow of transgenic plants. Mol Ecol Notes 1:321–324

    Article  CAS  Google Scholar 

  • Isagi Y, Kanazashi T, Suzuki W, Tanaka H, Abe T (1999) Polymorphic microsatellite DNA markers for Magnolia obovata Thunb. and their utility in related species. Mol Ecol 8:685–702

    Google Scholar 

  • Isagi Y, Kanazashi T, Suzuki W, Tanaka H, Abe T (2000) Microsatellite analysis of the regeneration process of Magnolia obovata Thunb. Heredity 84:143–151

    Article  CAS  PubMed  Google Scholar 

  • Isagi Y, Kanazashi T, Suzuki W, Tanaka H, Abe T (2004) Highly variable pollination patterns in Magnolia obovata revealed by microsatellite paternity analysis. Int J Plant Sci 165:1047–1053

    Article  CAS  Google Scholar 

  • Isagi Y, Saito D, Kawaguchi H, Tateno T, Watanabe S (2007) Effective pollen dispersal is enhanced by the genetic structure of an Aesculus turbinata population. J Ecol 95:983–990

    Article  Google Scholar 

  • Ishida K (2006) Maintenance of inbreeding depression in a highly self-fertilizing tree, Magnolia obovata Thunb. Evol Ecol 20:173–191

    Article  Google Scholar 

  • Ishida K, Yoshimaru H, Ito H (2003) Effects of geitonogamy on the seed set of Magnolia obovata Thunb. (Magnoliaceae). Int J Plant Sci 164:729–735

    Article  Google Scholar 

  • Jorgensen TH, Petanidou T, Andersson S (2006) The potential for selection on pollen colour dimorphisms in Nigella degenii: morph-specific differences in pollinator visitation, fertilisation success and siring ability. Evol Ecol 20:291–306

    Google Scholar 

  • Kenta T, Isagi Y, Nakagawa M, Yamashita M, Nakashizuka T (2004) Variation in pollen dispersal between years with different pollination conditions in a tropical emergent tree. Mol Ecol 13:3575–3584

    Article  CAS  PubMed  Google Scholar 

  • Kikuzawa K, Mizui N (1990) Flowering and fruiting phenology of Magnolia hypoleuca. Plant Species Biol 5:255–261

    Article  Google Scholar 

  • Latouchee-Hallé C, Ramboer A, Bandou E, Caron H, Kremer A (2004) Long-distance pollen flow and tolerance to selfing in a neotropical tree species. Mol Ecol 13:1055–1064

    Article  Google Scholar 

  • Lloyd DG (1992) Self- and cross-fertilization in plants. II. The selection of self-fertilization. Int J Plant Sci 153:370–380

    Article  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pembertom M (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • Matsuki Y, Isagi Y, Suyama Y (2007) The determination of multiple microsatellite genotypes and DNA sequences from a single pollen grain. Mol Ecol Notes 7:194–198

    Article  CAS  Google Scholar 

  • Matsuki Y, Tateno R, Shibata M, Isagi Y (2008) Pollination efficiencies of flower-visiting insects as determined by direct genetic analysis of pollen origin. Am J Bot 95:925–930

    Article  Google Scholar 

  • Mayfield MM, Waser NM, Price MV (2001) Exploring the ‘most effective pollinator principle’ with complex flowers: bumblebees and Ipomopsis aggregata. Ann Bot 88:591–596

    Article  Google Scholar 

  • Mizoguchi Y, Morisawa T, Ohtani Y (2002) Climate in Ogawa Forest Reserve. In: Nakashizuka T, Matsumoto Y (eds) Diversity and interaction in a temperate forest community. Springer, Tokyo

    Google Scholar 

  • Moeller DA, Geber MA (2005) Ecological context of the evolution of self-pollination in Clarkia xantiana: population size, plant communities, and reproductive assurance. Evolution 59:786–799

    PubMed  Google Scholar 

  • Murawski DA, Gilbert LE (1986) Pollen flow in Psiguria warscewiczii: a comparison of Heliconius butterflies and hummingbirds. Oecologia (Berl) 68:161–167

    Article  Google Scholar 

  • Rademaker MCJ, De Jong TJ, Klinkhamer PGL (1997) Pollen dynamics of bumble-bee visitation on Echium vulgare. Funct Ecol 11:554–563

    Article  Google Scholar 

  • Sakai S, Inoue T (1999) A new pollination system: dung-beetle pollination discovered in Orchidantha inouei (Lowiaceae, Zingiberales) in Sarawak, Malaysia. Am J Bot 86:56–61

    Article  Google Scholar 

  • Sakai S, Momose K, Yumoto T, Kato M, Inoue T (1999) Beetle pollination of Shorea parvifolia (section Mutica, Dipterocarpaceae) in a general flowering period in Sarawak, Malaysia. Am J Bot 86:62–69

    Article  Google Scholar 

  • Saville NM, We D, Fry GLA, Corbet SA (1997) Bumblebee movement in a fragmented agricultural landscape. Agric Ecosyst Environ 61:145–154

    Article  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insects and flowers: mutualism par excellence. In: Schoonhoven LM, van Loon JJA, Dicke M (eds) Insect–plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Schulke B, Waser NM (2001) Long-distance pollinator flights and pollen dispersal between populations of Delphinium nuttallianum. Oecologia (Berl) 127:239–245

    Article  Google Scholar 

  • Thien LB (1974) Floral biology of Magnolia. Am J Bot 61:1037–1045

    Article  Google Scholar 

  • Thien LB, Azuma H, Kawano S (2000) New perspectives on the pollination biology of basal angiosperms. Int J Plant Sci 161:225–235

    Article  Google Scholar 

  • Thomson JD (1986) Pollen transport and deposition by bumble bees in Erythronium: influences of floral nectar and bee grooming. J Ecol 74:329–341

    Article  Google Scholar 

  • Thorp RW (1979) Structural, behavioral, and physiological adaptations of bees (Apoidae) for collecting pollen. Ann Mo Bot Gard 66:788–812

    Article  Google Scholar 

  • Thorp RW (2000) The collection of pollen by bees. Plant Syst Evol 222:211–223

    Article  Google Scholar 

  • Utelli AB, Roy BA (2000) Pollinator abundance and behavior on Aconitum lycoctonum (Ranunculaceae): an analysis of the quantity and quality components of pollination. Oikos 89:461–470

    Article  Google Scholar 

  • Walther-Hellwig K, Frankl R (2000) Foraging distances of Bombus muscorum, Bombus lapidarius, and Bombus terrestris (Hymenoptera, Apidae). J Insect Behav 13:239–245

    Article  Google Scholar 

  • Widén B, Widén M (1990) Pollen limitation and distance-dependent fecundity in females of the clonal gynodioecious herb Glechoma hederacea (Lamiaceae). Oecologia (Berl) 83:191–196

    Article  Google Scholar 

  • Williams JH Jr, Friedman WE, Arnold ML (1999) Developmental selection within the angiosperm style: using gamete DNA to visualize interspecific pollen competition. Proc Natl Acad Sci USA 96:9201–9206

    Article  CAS  PubMed  Google Scholar 

  • Young HJ (1988) Neighborhood size in a beetle pollinated tropical aroid: effects of low density and synchronous flowering. Oecologia (Berl) 76:461–466

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Matsuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Matsuki, Y., Tomita, M., Isagi, Y. (2011). Pollination Efficiencies of Insects Visiting Magnolia obovata, as Determined by Single-Pollen Genotyping. In: Isagi, Y., Suyama, Y. (eds) Single-Pollen Genotyping. Ecological Research Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53901-8_3

Download citation

Publish with us

Policies and ethics