Skip to main content

Spatial Point Processes and the Projection Method

  • Chapter
In and Out of Equilibrium 2

Part of the book series: Progress in Probability ((PRPR,volume 60))

Abstract

The projection method obtains non-trivial point processes from higher-dimensional Poisson point processes by constructing a random subset of the higher-dimensional space and projecting the points of the Poisson process lying in that set onto the lower-dimensional region. This paper presents a review of this method related to spatial point processes as well as some examples of its applications. The results presented here are known for sometime but were not published before. Also, we present a backward construction of general spatial pure-birth processes and spatial birth and death processes based on the projection method that leads to a perfect simulation scheme for some Gibbs distributions in compact regions.

This research is partially supported by NSF under grant DMS 05-03983 and CNPq grant 301054/1993-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aalen, Odd O. and Hoem, Jan M. (1978). Random time changes for multivariate counting processes. Scand. Actuar. J., no. 2, 81–101.

    Google Scholar 

  2. Balan, R.M. (2001). A strong Markov property for set-indexed processes. Statist. Probab. Lett. 53 (2001), no. 2, 219–226.

    Article  MATH  MathSciNet  Google Scholar 

  3. Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. Springer-Verlag, New York, NY.

    MATH  Google Scholar 

  4. Ethier, S.N. and Kurtz, T.G. (1986). Markov Processes: Characterization and Convergence, John Wiley & Sons.

    Google Scholar 

  5. Fernández, R., Ferrari, P.A. and Garcia, N.L. (2002) Perfect simulation for interacting point processes, loss networks and Ising models. Stoch. Process. Appl., 102(1), 63–88.

    Article  MATH  Google Scholar 

  6. P.A. Ferrari and N. Garcia (1998). One-dimensional loss networks and conditioned M/G/∞ queues. J. Appl. Probab. 35, no. 4, 963–975.

    Article  MATH  MathSciNet  Google Scholar 

  7. Foley, Robert D. (1986). Stationary Poisson departure processes from nonstationary queues. J. Appl. Probab. 23, no. 1, 256–260.

    Article  MATH  MathSciNet  Google Scholar 

  8. Garcia, N.L. (1995a). Birth and Death Processes as Projections of Higher Dimensional Poisson Processes. Adv. in Applied Probability, 27, No. 4, pp. 911–930.

    Article  MATH  Google Scholar 

  9. Garcia, N.L. (1995b). Large Population Results for Epidemic Models. Stochastic Processes and their Applications, 60, No. 1, pp. 147–160.

    Article  MATH  MathSciNet  Google Scholar 

  10. Garcia, N.L. and Kurtz, T.G. (2006) Spatial birth and death processes as solutions of stochastic equations. ALEA, 1, pp. 281–303.

    MATH  MathSciNet  Google Scholar 

  11. Gaver, D.P., Jacobs, P.A. and Latouche, G. (1984). Finite birth-and-death models in randomly changing environments. Adv. Appl. Prob., 16, pp. 715–731.

    Article  MATH  MathSciNet  Google Scholar 

  12. Häggström, O., van Lieshout, M.N.M. and Møller, J. (1999). Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes. Bernoulli, 5(4):641–658.

    Article  MATH  MathSciNet  Google Scholar 

  13. Ivanoff, B. Gail: Merzbach, Ely. (1995), Stopping and set-indexed local martingales, Stochastic Process. Appl. 57 no. 1, 83–98.

    Article  MATH  MathSciNet  Google Scholar 

  14. Karr, A.F. (1986). Point Processes and Their Statistical Inference. Marcel Dekker.

    Google Scholar 

  15. Kendall, W.S. (1997). On some weighted Boolean models. In D. Jeulin, editor, Proceedings of the International Symposium on Advances in Theory and Applications of Random Sets (Fontainebleau, 1996), pages 105–120. World Sci. Publishing, River Edge, NJ.

    Google Scholar 

  16. Kendall, W.S. (1998). Perfect simulation for the area-interaction point process In L. Accardi and C.C. Heyde, editors, Probability Towards 2000, pages 218–284. Springer.

    Google Scholar 

  17. Kurtz, T.G. (1980a). The optional sampling theorem for martingales indexed by direct sets. Ann. Probab., 8, pp. 675–681.

    Article  MATH  MathSciNet  Google Scholar 

  18. Kurtz, T.G. (1980b). Representation of Markov processes as multiparameter time changes. Ann. of Probability, 8, pp. 682–715.

    Article  MATH  MathSciNet  Google Scholar 

  19. Kurtz, Thomas G. (1982). Representation and approximation of counting processes. Advances in filtering and optimal stochastic control (Cocoyoc, 1982), 177–191, Lecture Notes in Control and Inform, Sci., 42, Springer, Berlin.

    Google Scholar 

  20. Kurtz, T.G. (1989). Stochastic processes as projections of Poisson random measures. Special invited paper at IMS meeting, Washington, D.C. Unpublished.

    Google Scholar 

  21. Liggett, T.M. (1972). Existence theorems for infinite particle systems. Trans. Amer. Math. Soc., 165, pp. 471–481.

    Article  MATH  MathSciNet  Google Scholar 

  22. Lotwick, H.W. and Silverman, B.W. (1981). Convergence of spatial birth-and-death processes. Math. Proc. Cambridge Phil. Soc., 90, pp. 155–165.

    Article  MATH  MathSciNet  Google Scholar 

  23. Massoulié, Laurent. (1998). Stability for a general class of interacting point process dynamics and applications. Stoch. Processes Appl., 75, pp. 1–30.

    Article  MATH  Google Scholar 

  24. Meyer, P.A. (1971). Démonstration simplifiée ďun théorème de Knight. Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970), pp. 191–195. Lecture Notes in Math., Vol. 191, Springer, Berlin.

    Google Scholar 

  25. Propp, J.G. and Wilson, D.B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures and Algorithms, 9, pp. 223–252.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Garcia, N.L., Kurtz, T.G. (2008). Spatial Point Processes and the Projection Method. In: Sidoravicius, V., Vares, M.E. (eds) In and Out of Equilibrium 2. Progress in Probability, vol 60. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8786-0_13

Download citation

Publish with us

Policies and ethics