Skip to main content

Murine models of allergen-induced airway hyperresponsiveness and inflammation

  • Chapter
Book cover In Vivo Models of Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 910 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cookson W (1999) The alliance of genes and environment in asthma and allergy. Nature 402: B5–11

    Article  PubMed  CAS  Google Scholar 

  2. Barnes KC, Marsh DG (1998) The genetics and complexity of allergy and asthma. Immunol Today 19: 325–332

    Article  PubMed  CAS  Google Scholar 

  3. Hosken NA, Shibuya K, Heath AW, Murphy KM, O’Garra A (1995) The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model. J Exp Med 182: 1579–1584

    Article  PubMed  CAS  Google Scholar 

  4. Murray JS, Pfeiffer C, Madri J, Bottomly K (1992) Major histocompatibility complex (MHC) control of CD4 T cell subset activation. II. A single peptide induces either humoral or cell-mediated responses in mice of distinct MHC genotype. Eur J Immunol 22: 559–565

    PubMed  CAS  Google Scholar 

  5. Pfeiffer C, Stein J, Southwood S, Ketelaar H, Sette A, Bottomly K (1995) Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. J Exp Med 181: 1569–1574

    Article  PubMed  CAS  Google Scholar 

  6. Constant SL, Lee KS, Bottomly K (2000) Site of antigen delivery can influence T cell priming: pulmonary environment promotes preferential Th2-type differentiation. Eur J Immunol 30: 840–847

    Article  PubMed  CAS  Google Scholar 

  7. Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17: 138–146

    Article  PubMed  CAS  Google Scholar 

  8. Bochner BS, Undem BJ, Lichtenstein LM (1994) Immunological aspects of allergic asthma. Annu Rev Immunol 12: 295–335

    Article  PubMed  CAS  Google Scholar 

  9. Stumbles PA, Thomas JA, Pimm CL, Lee PT, Venaille TJ, Proksch S, Holt PG (1998) Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J Exp Med 188: 2019–2031

    Article  PubMed  CAS  Google Scholar 

  10. Trinchieri G (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13: 251–276

    Article  PubMed  CAS  Google Scholar 

  11. Szabo SJ, Jacobson NG, Dighe AS, Gubler U, Murphy KM (1995) Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 2: 665–675

    Article  PubMed  CAS  Google Scholar 

  12. Moser M, Murphy KM (2000) Dendritic cell regulation of TH1-TH2 development. Nat Immunol 1: 199–205

    Article  PubMed  CAS  Google Scholar 

  13. Holt PG, Clough JB, Holt BJ, Baron-Hay MJ, Rose AH, Robinson BW, Thomas WR (1992) Genetic ‘risk’ for atopy is associated with delayed postnatal maturation of T-cell competence. Clin Exp Allergy 22: 1093–1099

    Article  PubMed  CAS  Google Scholar 

  14. Wegmann TG, Lin H, Guilbert L, Mosmann TR (1993) Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 14: 353–356

    Article  PubMed  CAS  Google Scholar 

  15. Spergel JM, Paller AS (2003) Atopic dermatitis and the atopic march. J Allergy Clin Immunol 112: S118–127

    Article  PubMed  Google Scholar 

  16. Hahn EL, Bacharier LB (2005) The atopic march: the pattern of allergic disease development in childhood. Immunol Allergy Clin North Am 25: 231–246

    Article  PubMed  Google Scholar 

  17. Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299: 1259–1260

    Article  PubMed  CAS  Google Scholar 

  18. Romagnani S (1994) Regulation of the development of type 2 T-helper cells in allergy. Curr Opin Immunol 6: 838–846

    Article  PubMed  CAS  Google Scholar 

  19. von Mutius E, Braun-Fahrlander C, Schierl R, Riedler J, Ehlermann S, Maisch S, Waser M, Nowak D (2000) Exposure to endotoxin or other bacterial components might protect against the development of atopy. Clin Exp Allergy 30: 1230–1234

    Article  Google Scholar 

  20. Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L, Maisch S, Carr D, Gerlach F, Bufe A et al (2002) Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347: 869–877

    Article  PubMed  Google Scholar 

  21. Park JH, Gold DR, Spiegelman DL, Burge HA, Milton DK (2001) House dust endotoxin and wheeze in the first year of life. Am J Respir Crit Care Med 163: 322–328

    PubMed  CAS  Google Scholar 

  22. Gehring U, Bolte G, Borte M, Bischof W, Fahlbusch B, Wichmann HE, Heinrich J (2001) Exposure to endotoxin decreases the risk of atopic eczema in infancy: a cohort study. J Allergy Clin Immunol 108: 847–854

    Article  PubMed  CAS  Google Scholar 

  23. Stene LC, Nafstad P (2001) Relation between occurrence of type 1 diabetes and asthma. Lancet 357: 607–608

    Article  PubMed  CAS  Google Scholar 

  24. Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296: 490–494

    Article  PubMed  CAS  Google Scholar 

  25. Wills-Karp M, Santeliz J, Karp CL (2001) The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol 1: 69–75

    Article  PubMed  CAS  Google Scholar 

  26. Romagnani S (2004) The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both? Immunology 112: 352–363

    Article  PubMed  CAS  Google Scholar 

  27. Gelfand EW (2002) Pro: mice are a good model of human airway disease. Am J Respir Crit Care Med 166: 5–6; discussion 7–8

    Article  PubMed  Google Scholar 

  28. Irvin CG, Bates JH (2003) Measuring the lung function in the mouse: the challenge of size. Respir Res 4: 4

    Article  PubMed  Google Scholar 

  29. Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG, Gelfand EW (1997) Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med 156: 766–775

    PubMed  CAS  Google Scholar 

  30. Takeda K, Hamelmann E, Joetham A, Shultz LD, Larsen GL, Irvin CG, Gelfand EW (1997) Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J Exp Med 186: 449–454

    Article  PubMed  CAS  Google Scholar 

  31. Larsen GL, Fame TM, Renz H, Loader JE, Graves J, Hill M, Gelfand EW (1994) Increased acetylcholine release in tracheas from allergen-exposed IgE-immune mice. Am J Physiol 266: L263–270

    PubMed  CAS  Google Scholar 

  32. Koya T, Kodama T, Takeda K, Miyahara N, Yang ES, Taube C, Joetham A, Park JW, Dakhama A, Gelfand EW (2006) Importance of myeloid dendritic cells in persistent airway disease after repeated allergen exposure. Am J Respir Crit Care Med 173: 45–55

    Article  CAS  Google Scholar 

  33. Kuhn R, Rajewsky K, Muller W (1991) Generation and analysis of interleukin-4 deficient mice. Science 254: 707–710

    Article  PubMed  CAS  Google Scholar 

  34. Kopf M, Le Gros G, Bachmann M, Lamers MC, Bluethmann H, Kohler G (1993) Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 362: 245–248

    Article  PubMed  CAS  Google Scholar 

  35. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM et al (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282: 2261–2263

    Article  PubMed  CAS  Google Scholar 

  36. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD (1998) Interleukin-13: central mediator of allergic asthma. Science 282: 2258–2261

    Article  PubMed  CAS  Google Scholar 

  37. Walter DM, McIntire JJ, Berry G, McKenzie AN, Donaldson DD, DeKruyff RH, Umetsu DT (2001) Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol 167: 4668–4675

    PubMed  CAS  Google Scholar 

  38. Taube C, Duez C, Cui ZH, Takeda K, Rha YH, Park JW, Balhorn A, Donaldson DD, Dakhama A, Gelfand EW (2002) The role of IL-13 in established allergic airway disease. J Immunol 169: 6482–6489

    PubMed  CAS  Google Scholar 

  39. Cohn L, Homer RJ, Marinov A, Rankin J, Bottomly K (1997) Induction of airway mucus production By T helper 2 (Th2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. J Exp Med 186: 1737–1747

    Article  PubMed  CAS  Google Scholar 

  40. Cohn L, Tepper JS, Bottomly K (1998) IL-4-independent induction of airway hyperresponsiveness by Th2, but not Th1, cells. J Immunol 161: 3813–3816

    PubMed  CAS  Google Scholar 

  41. Joetham A, Takeda K, Taube C, Miyahara N, Kanehiro A, Dakhama A, Gelfand EW (2005) Airway hyperresponsiveness in the absence of CD4+ T cells after primary but not secondary challenge. Am J Respir Cell Mol Biol 33: 89–96

    Article  PubMed  CAS  Google Scholar 

  42. Steinke JW (2004) Anti-interleukin-4 therapy. Immunol Allergy Clin North Am 24: 599–614

    Article  PubMed  Google Scholar 

  43. Cieslewicz G, Tomkinson A, Adler A, Duez C, Schwarze J, Takeda K, Larson KA, Lee JJ, Irvin CG, Gelfand EW (1999) The late, but not early, asthmatic response is dependent on IL-5 and correlates with eosinophil infiltration. J Clin Invest 104: 301–308

    PubMed  CAS  Google Scholar 

  44. Dakhama A, Kanehiro A, Makela MJ, Loader JE, Larsen GL, Gelfand EW (2002) Regulation of airway hyperresponsiveness by calcitonin gene-related peptide in allergen sensitized and challenged mice. Am J Respir Crit Care Med 165: 1137–1144

    PubMed  Google Scholar 

  45. Taube C, Dakhama A, Rha YH, Takeda K, Joetham A, Park JW, Balhorn A, Takai T, Poch KR, Nick JA et al (2003) Transient neutrophil infiltration after allergen challenge is dependent on specific antibodies and Fc gamma III receptors. J Immunol 170: 4301–4309

    PubMed  CAS  Google Scholar 

  46. Taube C, Nick JA, Siegmund B, Duez C, Takeda K, Rha YH, Park JW, Joetham A, Poch K, Dakhama A et al (2004) Inhibition of early airway neutrophilia does not affect development of airway hyperresponsiveness. Am J Respir Cell Mol Biol 30: 837–843

    Article  PubMed  CAS  Google Scholar 

  47. Tomkinson A, Cieslewicz G, Duez C, Larson KA, Lee JJ, Gelfand EW (2001) Temporal association between airway hyperresponsiveness and airway eosinophilia in ovalbumin-sensitized mice. Am J Respir Crit Care Med 163: 721–730

    PubMed  CAS  Google Scholar 

  48. Infuhr D, Crameri R, Lamers R, Achatz G (2005) Molecular and cellular targets of anti-IgE antibodies. Allergy 60: 977–985

    Article  PubMed  CAS  Google Scholar 

  49. Mehlhop PD, van de Rijn M, Goldberg AB, Brewer JP, Kurup VP, Martin TR, Oettgen HC (1997) Allergen-induced bronchial hyperreactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Proc Natl Acad Sci USA 94: 1344–1349

    Article  PubMed  CAS  Google Scholar 

  50. Hamelmann E, Takeda K, Schwarze J, Vella AT, Irvin CG, Gelfand EW (1999) Development of eosinophilic airway inflammation and airway hyperresponsiveness requires interleukin-5 but not immunoglobulin E or B lymphocytes. Am J Respir Cell Mol Biol 21: 480–489

    PubMed  CAS  Google Scholar 

  51. Hamelmann E, Tadeda K, Oshiba A, Gelfand EW (1999) Role of IgE in the development of allergic airway inflammation and airway hyperresponsiveness — a murine model. Allergy 54: 297–305

    Article  PubMed  CAS  Google Scholar 

  52. Hamelmann E, Oshiba A, Paluh J, Bradley K, Loader J, Potter TA, Larsen GL, Gelfand EW (1996) Requirement for CD8+ T cells in the development of airway hyperresponsiveness in a marine model of airway sensitization. J Exp Med 183: 1719–1729

    Article  PubMed  CAS  Google Scholar 

  53. Taube C, Wei X, Swasey CH, Joetham A, Zarini S, Lively T, Takeda K, Loader J, Miyahara N, Kodama T et al (2004) Mast cells, Fc epsilon RI, and IL-13 are required for development of airway hyperresponsiveness after aerosolized allergen exposure in the absence of adjuvant. J Immunol 172: 6398–6406

    PubMed  CAS  Google Scholar 

  54. Wynn TA (2003) IL-13 effector functions. Annu Rev Immunol 21: 425–456

    Article  PubMed  CAS  Google Scholar 

  55. Wills-Karp M (2004) Interleukin-13 in asthma pathogenesis. Immunol Rev 202: 175–190

    Article  PubMed  CAS  Google Scholar 

  56. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA (1999) Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103: 779–788

    PubMed  CAS  Google Scholar 

  57. Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z, Elias JA, Sheppard D, Erle DJ (2002) Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med 8: 885–889

    PubMed  CAS  Google Scholar 

  58. Venkayya R, Lam M, Willkom M, Grunig G, Corry DB, Erle DJ (2002) The Th2 lymphocyte products IL-4 and IL-13 rapidly induce airway hyperresponsiveness through direct effects on resident airway cells. Am J Respir Cell Mol Biol 26: 202–208

    PubMed  CAS  Google Scholar 

  59. Kay AB (1992) “Helper” (CD4+) T cells and eosinophils in allergy and asthma. Am Rev Respir Dis 145: S22–2

    PubMed  CAS  Google Scholar 

  60. Romagnani S (2002) Cytokines and chemoattractants in allergic inflammation. Mol Immunol 38: 881–885

    Article  PubMed  CAS  Google Scholar 

  61. Gavett SH, Chen X, Finkelman F, Wills-Karp M (1994) Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 10: 587–593

    PubMed  CAS  Google Scholar 

  62. Haile S, Lefort J, Joseph D, Gounon P, Huerre M, Vargaftig BB (1999) Mucous-cell metaplasia and inflammatory-cell recruitment are dissociated in allergic mice after antibody-and drug-dependent cell depletion in a murine model of asthma. Am J Respir Cell Mol Biol 20: 891–902

    PubMed  CAS  Google Scholar 

  63. Miyahara N, Takeda K, Kodama T, Joetham A, Taube C, Park JW, Miyahara S, Balhorn A, Dakhama A, Gelfand EW (2004) Contribution of antigen-primed CD8+ T cells to the development of airway hyperresponsiveness and inflammation is associated with IL-13. J Immunol 172: 2549–2558

    PubMed  CAS  Google Scholar 

  64. Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, Nakayama T, Taniguchi M, Grusby MJ, DeKruyff RH, Umetsu DT (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9: 582–588

    Article  PubMed  CAS  Google Scholar 

  65. Burdin N, Kronenberg M (1999) CD1-mediated immune responses to glycolipids. Curr Opin Immunol 11: 326–331

    Article  PubMed  CAS  Google Scholar 

  66. Gumperz JE (2006) The ins and outs of CD1 molecules: bringing lipids under immunological surveillance. Traffic 7: 2–13

    Article  PubMed  CAS  Google Scholar 

  67. Dascher CC, Brenner MB (2003) Evolutionary constraints on CD1 structure: insights from comparative genomic analysis. Trends Immunol 24: 412–418

    Article  PubMed  CAS  Google Scholar 

  68. Van Kaer L, Joyce S (2005) Innate immunity: NKT cells in the spotlight. Curr Biol 15: R429–431

    Article  PubMed  CAS  Google Scholar 

  69. Yoshimoto T, Paul WE (1994) CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med 179: 1285–1295

    Article  PubMed  CAS  Google Scholar 

  70. Bendelac A, Rivera MN, Park SH, Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15: 535–562

    Article  PubMed  CAS  Google Scholar 

  71. Smiley ST, Kaplan MH, Grusby MJ (1997) Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275: 977–979

    Article  PubMed  CAS  Google Scholar 

  72. Lisbonne M, Diem S, de Castro Keller A, Lefort J, Araujo LM, Hachem P, Fourneau JM, Sidobre S, Kronenberg M, Taniguchi M et al (2003) Invariant V alpha 14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J Immunol 171: 1637–1641

    PubMed  CAS  Google Scholar 

  73. Kim JO, Kim DH, Chang WS, Hong C, Park SH, Kim S, Kang CY (2004) Asthma is induced by intranasal coadministration of allergen and natural killer T-cell ligand in a mouse model. J Allergy Clin Immunol 114: 1332–1338

    Article  PubMed  CAS  Google Scholar 

  74. Hachem P, Lisbonne M, Michel ML, Diem S, Roongapinun S, Lefort J, Marchal G, Herbelin A, Askenase PW, Dy M et al (2005) Alpha-Galactosylceramide-induced iNKT cells suppress experimental allergic asthma in sensitized mice: role of IFN-gamma. Eur J Immunol 35: 2793–2802

    Article  PubMed  CAS  Google Scholar 

  75. Matsuda H, Suda T, Sato J, Nagata T, Koide Y, Chida K, Nakamura H (2005) Alpha-Galactosylceramide, a ligand of natural killer T cells, inhibits allergic airway inflammation. Am J Respir Cell Mol Biol 33: 22–31

    Article  PubMed  CAS  Google Scholar 

  76. Meyer EH, Goya S, Akbari O, Berry GJ, Savage PB, Kronenberg M, Nakayama T, Dekruyff RH, Umetsu DT (2006) Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Proc Natl Acad Sci USA 103: 2782–2787

    Article  PubMed  CAS  Google Scholar 

  77. Parekh VV, Wilson MT, Olivares-Villagomez D, Singh AK, Wu L, Wang CR, Joyce S, Van Kaer L (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115: 2572–2583

    Article  PubMed  CAS  Google Scholar 

  78. Sad S, Marcotte R, Mosmann TR (1995) Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 and Th2 cytokines. Immunity 2:271–279

    Article  PubMed  CAS  Google Scholar 

  79. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401: 708–712

    Article  PubMed  CAS  Google Scholar 

  80. Masopust D, Vezys V, Marzo AL, Lefrancois L (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291: 2413–2417

    Article  PubMed  CAS  Google Scholar 

  81. Miyahara N, Swanson BJ, Takeda K, Taube C, Miyahara S, Kodama T, Dakhama A, Ott VL, Gelfand EW (2004) Effector CD8+ T cells mediate inflammation and airway hyperresponsiveness. Nat Med 10: 865–869

    Article  PubMed  CAS  Google Scholar 

  82. Goodarzi K, Goodarzi M, Tager AM, Luster AD, von Andrian UH (2003) Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat Immunol 4: 965–973

    Article  PubMed  CAS  Google Scholar 

  83. Tager AM, Bromley SK, Medoff BD, Islam SA, Bercury SD, Friedrich EB, Carafone AD, Gerszten RE, Luster AD (2003) Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat Immunol 4: 982–990

    Article  PubMed  CAS  Google Scholar 

  84. Lewis RA, Austen KF, Soberman RJ (1990) Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med 323: 645–655

    Article  PubMed  CAS  Google Scholar 

  85. Miyahara N, Takeda K, Miyahara S, Matsubara S, Koya T, Joetham A, Krishnan E, Dakhama A, Haribabu B, Gelfand EW (2005) Requirement for leukotriene B4 receptor 1 in allergen-induced airway hyperresponsiveness. Am J Respir Crit Care Med 172: 161–167

    Article  PubMed  Google Scholar 

  86. Miyahara N, Takeda K, Miyahara S, Taube C, Joetham A, Koya T, Matsubara S, Dakhama A, Tager AM, Luster AD et al (2005) Leukotriene B4 receptor-1 is essential for allergen-mediated recruitment of CD8+ T cells and airway hyperresponsiveness. J Immunol 174: 4979–4984

    PubMed  CAS  Google Scholar 

  87. Oshiba A, Hamelmann E, Takeda K, Bradley KL, Loader JE, Larsen GL, Gelfand EW (1996) Passive transfer of immediate hypersensitivity and airway hyperresponsiveness by allergen-specific immunoglobulin (Ig) E and IgG1 in mice. J Clin Invest 97: 1398–1408

    Article  PubMed  CAS  Google Scholar 

  88. Taube C, Miyahara N, Ott V, Swanson B, Takeda K, Loader J, Shultz LD, Tager AM, Luster AD, Dakhama A et al (2006) The Leukotriene B4 receptor (BLT1) is required for effector CD8+ T cell-mediated, mast cell-dependent airway hyperresponsiveness. J Immunol 176: 3157–3164

    PubMed  CAS  Google Scholar 

  89. van Rensen EL, Sont JK, Evertse CE, Willems LN, Mauad T, Hiemstra PS, Sterk PJ (2005) Bronchial CD8 cell infiltrate and lung function decline in asthma. Am J Respir Crit Care Med 172: 837–841

    Article  PubMed  Google Scholar 

  90. Gelfand EW, Dakhama A (2006) CD8(+) T lymphocytes and leukotriene B4: Novel interactions in the persistence and progression of asthma. J Allergy Clin Immunol 117: 577–582

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Dakhama, A., Gelfand, E.W. (2006). Murine models of allergen-induced airway hyperresponsiveness and inflammation. In: Stevenson, C.S., Marshall, L.A., Morgan, D.W. (eds) In Vivo Models of Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7760-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7643-7760-1_3

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-7757-1

  • Online ISBN: 978-3-7643-7760-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics