Skip to main content

Treatment of autoimmune diseases by targeted DNA vaccines encoding proinflammatory mediators

  • Chapter
Treatment of Autoimmune Disorders
  • 125 Accesses

Abstract

Conceptually, gene therapy has been used as an efficient methodology to circum-vent genetic deficiency by transfection of cDNA encoding the appropriate functional gene product. It is therefore conceivable that best candidates for this way of therapy would be genetic diseases associated with a single-gene mutation, such as X-linked agammaglobulinemia or cystic fibrosis. Paradoxically, it appears that gene therapy needs to confront similar levels of technological challenges when encountering genetic disorders, such as X-linked agammaglobulinemia or cystic fibrosis, to those required for a successful intervention in multifactorial diseases. Yet, while genetic disorders that evolve a mutation in a single gene are rare, multifactorial diseases are a major cause of illness and death in the developed countries. This has motivated scientists to explore gene therapy strategies in multifactorial disorders. The current review discusses the use of a modification of gene therapy named DNA vaccination to suggest novel ways for interfering in the regulation of the inflammatory process in T-cell-mediated auto-immune diseases, such as multiple sclerosis (MS), rheumatoid arthritis (RA), and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383: 787–793.

    Article  PubMed  CAS  Google Scholar 

  • Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE (1989) Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 124: 132–143

    Article  PubMed  CAS  Google Scholar 

  • Barnes DA, Tse J, Kaufhold M, Owen M, Hesselgesser J, Strieter R, et al (1998) Polyclonal antibody directed against human RANTES ameliorates disease in the Lewis rat adjuvant-induced arthritis model. J Clin Invest 101: 2910–2919

    Article  PubMed  CAS  Google Scholar 

  • Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, et al (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385: 640–644 Ben-Nun A, Wekerle H, Cohen IR (1981a) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11: 195–199

    Google Scholar 

  • Ben-Nun A, Wekerle H, Cohen IR (1981b) Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature 292: 60–61

    Article  CAS  Google Scholar 

  • Beraud E, Lider O, Baharav E, Reshef T, Cohen IR (1989) Vaccination against experimental autoimmune encephalomyelitis using a subencephalitogenic dose of autoimmune effector cells 1: characteristics of vaccination. J Autoimmun 2: 75–86

    Article  PubMed  CAS  Google Scholar 

  • Boyer JD, Ugen KE, Wang B, Agadjanyan M, Gilbert L, Bagarazzi ML, et al (1997) Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination. Nat Med 3: 526–532

    Article  PubMed  CAS  Google Scholar 

  • Brocke S, Gijbels K, Allegretta M, Ferber I, Piercy C, Blankenstein T, et al (1996) Treatment of experi-mental encephalomyelitis with a peptide analogue of myelin basic protein. Nature 379: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Cash E, Minty A, Ferrara P, Caput D, Fradelizi D, Rott O (1994) Macrophage-inactivating IL-13 sup-presses experimental autoimmune encephalomyelitis in rats. J Immunol 153: 4258–4267

    PubMed  CAS  Google Scholar 

  • Chen Y, Kuchroo VK, Inobe J, Hafler D, Weiner HL (1994) Regulatory T-cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265: 1237–1240

    Article  PubMed  CAS  Google Scholar 

  • Chu W, Gong X, Li Z, Takabayash K, Ouyang H, Chen Y, et al (2000) DNA-PKcs is required for activa-tion of innate immunity by immunostimulatory DNA. Cell 103: 909–918

    Article  PubMed  CAS  Google Scholar 

  • Critchfield JM, Lenardo MJ (1995) Antigen-induced programmed T cell death as a new approach to immune therapy. Clin Immunol Immunopathol 75: 13–19

    Article  PubMed  CAS  Google Scholar 

  • Critchfield JM, Racke MK, Zuniga PJ, Cannella B, Raine CS, Goverman J, et al (1994) T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263: 1139–1143

    Article  PubMed  CAS  Google Scholar 

  • Cyster JG, Hartley SB, Goodnow CC (1994) Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 371: 389–395

    Article  PubMed  CAS  Google Scholar 

  • Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, et al (1991) IL-10 acts on the antigen presenting cell to inhibit cytokine production by Thl cells. J Immunol 146: 3444–3451

    PubMed  CAS  Google Scholar 

  • Friedman A, Weiner HL (1994) Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci USA 91: 6688–6692

    Article  PubMed  CAS  Google Scholar 

  • Fukaura H, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Hafler DA (1996) Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta 1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 98: 70–77

    Article  PubMed  CAS  Google Scholar 

  • Gong JH, Ratkay LG, Waterfield JD, Clark-Lewis I (1997) An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J Exp Med 186: 131–137

    Article  PubMed  CAS  Google Scholar 

  • Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM, Mendez MJ, et al (1994) Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 7: 13–21

    Article  PubMed  CAS  Google Scholar 

  • Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, et al (1997) A CD4+ T-cell subsetinhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742

    Article  PubMed  CAS  Google Scholar 

  • Healey D, Ozegbe P, Arden S, Chandler P, Hutton J, Cooke A (1995) In vivo activity and in vitro specificity of CD4+ Thl and Th2 cells derived from the spleens of diabetic NOD mice. J Clin Invest 95: 2979–2985

    Article  PubMed  CAS  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Hu-Li J, Chen H, Ben-Sasson SZ, Paul WE (1997) IL-4 and IL-13 production in differentiated T helper type 2 cells is not IL-4 dependent. J Immunol 159: 3731–3738

    PubMed  CAS  Google Scholar 

  • Janeway CA Jr (1992) The immune system evolved to discriminate infectious nonself from noninfectiousself. Immunol Today 13: 11–16

    Article  PubMed  CAS  Google Scholar 

  • Kappler J, Roehm N, Marrack P (1987) T cell tolerance by clonal elemination in the thymus. Cell 49: 273–280

    Article  PubMed  CAS  Google Scholar 

  • Karin N, Szafer F, Mitchell D, Gold DP, Steinman L (1993) Selective and nonselective stages in homing of T lymphocytes to the central nervous system during experimental allergic encephalomyelitis. J Immunol 150:4116–4124

    PubMed  CAS  Google Scholar 

  • Karin N, Mitchell JD, Brocke S, Ling N, Steinman L (1994) Reversal of experimental autoimmune enceph-alomyelitis by as soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of IFN-g and TNF-a production. J Exp Med 180: 2227–2237

    Article  PubMed  CAS  Google Scholar 

  • Karin N, Binah O, Grabie N, Mitchel DJ, Felzen B, Solomon MD, et al (1998) Short peptide based tolerogens without antigenic activity reverse autoimmunity. J Immunol 160: 5188–5149

    PubMed  CAS  Google Scholar 

  • Karpus WJ, Lukacs NW, McRae BL, Strieter RM, Kunkel SL, Miller SD (1995) An important role for the chemokine macrophage inflammatory protein-1 alpha in the pathogenesis of the T cell-mediated auto-immune disease, experimental autoimmune encephalomyelitis. J Immunol 155: 5003–5010

    PubMed  CAS  Google Scholar 

  • Katz JD, Benoist C, Mathis D (1995) T helper subsets in insulin dependent diabetes. Science 268: 1185–1188 Khoruts A, Miller SD, Jenkins MK (1995) Neuroantigen-specific Th2 cells are inefficient suppressors of experimental autoimmune encephalomyelitis induced by effector Thl cells. J Immunol 155: 5011–5017

    Google Scholar 

  • Khoury SJ, Hancock WW, Weiner HL (1992) Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglan-din E expression in the brain. J Exp Med 176: 1355–1364

    CAS  Google Scholar 

  • Kim JJ, Ayyavoo V, Bagarazzi ML, Chattergoon MA, Dang K, Wang B, et al (1997a) In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J Immunol 158: 816–826

    CAS  Google Scholar 

  • Kim JJ, Bagarazzi ML, Trivedi N, Hu Y, Kazahaya K, Wilson DM, et al (1997b) Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes. Nat Biotechnol 15: 641–646

    Article  CAS  Google Scholar 

  • Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, et al (1995) B7–1 and B7–2 costimulatory molecules activate differentially the Thl/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80: 707–718

    Article  PubMed  CAS  Google Scholar 

  • Lederer JA, Perez VL, DesRoches L, Kim SM, Abbas AK, Lichtman AH (1996) Cytokine transcriptional events during helper T cell subset differentiation. J Exp Med 184: 397–106

    Article  PubMed  CAS  Google Scholar 

  • Leonard JP, Waldburger KE, Goldman SJ (1995) Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 181: 381–386

    Article  PubMed  CAS  Google Scholar 

  • Liblau RS, Singer SM, McDevitt HO (1995) Thl and Th2 CD4+ T-cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today 16: 34–38

    Article  PubMed  CAS  Google Scholar 

  • Lider O, Reshef T, Beraud E, Ben-Nun A, Cohen IR (1988) Anti-idiotypic network induced by T cell vaccination against experimental autoimmune encephalomylitis. Science 239: 181–183

    Article  PubMed  CAS  Google Scholar 

  • Lider O, Beraud E, Reshef T, Friedman A, Cohen IR (1989) Vaccination against experimental autoimmune encephalomyelitis using a subencephalitogenic dose of autoimmune effector T cells 2: induction of a protective anti-idiotypic response. J Autoimmun 2: 87–99

    Article  PubMed  CAS  Google Scholar 

  • Mathisen PM, Tuohy VK (1998) Gene therapy in treatment of autoimmune diseases. Immunol Today 19: 193–195

    Article  Google Scholar 

  • Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045

    Article  PubMed  CAS  Google Scholar 

  • Melamed D, Benschop RJ, Cambier JC, Nemazee D (1998) Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell 92: 173–182

    Article  PubMed  CAS  Google Scholar 

  • Modlin RL (2000) A Toll for DNA vaccine. Nature 408: 659–660

    Article  PubMed  CAS  Google Scholar 

  • Mosmann TR, Coffman RL (1989) Thl and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 9: 145–173

    Article  Google Scholar 

  • Mosmann T, Moore K (1991) The role of IL-10 in the crossregulation of Thl and Th2 responses. Immunol Today 12: A49–A53

    Article  PubMed  CAS  Google Scholar 

  • O’Garra A, Murphy K (1994) Role of cytokines in determining T-lymphocyte function. Curr Opin Immunol 6: 458–66

    Article  PubMed  Google Scholar 

  • Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, et al (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387: 611–617

    Article  PubMed  CAS  Google Scholar 

  • Pearson CM (1956) Development of arthritis, periarthritis and periostitis in rats given adjuvants. Proc Soc Exp Biol Med 91: 95–101

    PubMed  CAS  Google Scholar 

  • Racke MK, Bonomo A, Scott DE, Cannella B, Levine A, Raine CS, et al (1994) Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 180: 1961–1966

    Article  PubMed  CAS  Google Scholar 

  • Ramsdell F, Fowlkes BJ (1990) Clonal deletion versus clonal anergy: the role of the thymus in inducingself tolerance. Science 248: 1342–1348

    Article  PubMed  CAS  Google Scholar 

  • Rapoport MJ, Jaramillo A, Zipris D, Lazarus A, Serreze DV, Leiter EH, et al (1993) Interleukin-4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J Exp Med 178: 87–99

    Article  PubMed  CAS  Google Scholar 

  • Raz E, Watanabe A, Baird SM, Eisenberg RA, Parr TB, Lötz M, et al (1993) Systemic immunological effects of cytokine genes injected into skeletal muscle. Proc Natl Acad Sei USA 90: 4523–4527

    Article  CAS  Google Scholar 

  • Raz E, Tighe H, Sato Y, Corr M, Dudler JA, Roman M, et al (1996) Preferential induction of a Thl immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc Natl Acad Sei USA 93: 5141–5145

    Article  CAS  Google Scholar 

  • Riethmuller G, Rieber EP, Kiefersauer S, Prinz J, van der Lübbe P, Meiser B, et al (1992) From antilym-phocyte serum to therapeutic monoclonal antibodies: first experiences with a chimeric CD4 antibody in the treatment of autoimmune disease. Immunol Rev 129: 81–104

    Article  PubMed  CAS  Google Scholar 

  • Rollins BJ (1997) Chemokines. Blood 90: 909–928

    PubMed  CAS  Google Scholar 

  • Rott O, Fleischer B, Cash E (1994) Interleukin-10 prevents experimental allergic encephalomyelitis in rats. Eur J Immunol 24: 1434–1440

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Lanzavecchia A, Mackay CR (1998) Chemokines and chemokine receptors in T-cell priming and Thl/Th2- mediated responses. Immunol Today 19: 568–574

    Article  PubMed  CAS  Google Scholar 

  • Saoudi A, Kuhn J, Huygen K, de Kozak Y, Velu T, Goldman M, et al (1993) TH2 activated cells prevent experimental autoimmune uveoretinitis, a TH1-dependent autoimmune disease. Eur J Immunol 23: 3096–3103

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Roman M, Tighe H, Lee D, Corr M, Nguyen M, et al (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273: 352–354

    Article  PubMed  CAS  Google Scholar 

  • Seder RA, Paul WE, Davis MM, Fazekas de St. Groth B (1992) The presence of interleukin-4 during in vitro priming determines the cytokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med 176: 1091–1098

    Article  Google Scholar 

  • Seder RA, Gazzinelli R, Sher A, Paul WE (1993) IL-12 acts directly on CD4+ T cells to enhance priming for IFN-y production and diminishes IL-4 inhibition of such priming. Proc Natl Acad Sei USA 90: 10188–10192

    Article  CAS  Google Scholar 

  • Shaw MK, Lorens JB, Dhawan A, DalCanto R, Tse HY, Tran AB, et al (1997) Local delivery of interleukin 4 by retro virus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J Exp Med 185: 1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Steinman L (1995) Escape from “horror autotoxicus”: pathogenesis and treatment of autoimmune disease. Cell 80: 7–10

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Ben-Nun A, Wekerle H (1988a) Regulatory circuits in autoimmunity: recruitment of counterregulatory CD8+ T cells by encephalitogenic CD4+ T line cells. Eur J Immunol 18: 1993–1999

    Article  CAS  Google Scholar 

  • Sun D, Qin Y, Chluba J, Epplen JT, Wekerle H (1988b) Suppression of experimentally induced auto-immune encephalomyelitis by cytolytic T-T cell interactions. Nature 332: 843–845

    Article  CAS  Google Scholar 

  • Swain SL, Weinberg AD, English M, Huston G (1990) IL-4 directs the development of Th2-like helper effectors. J Immunol 145: 3796–3806

    PubMed  CAS  Google Scholar 

  • Tascon RE, Colston MJ, Ragno S, Stavropoulos E, Gregory D, Lowrie DB (1996) Vaccination against tuberculosis by DNA injection. Nat Med 2: 888–892

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G (1996) Interleukin-12 and its role in the generation of Thl cells. Immunol Today 14: 335–337

    Article  Google Scholar 

  • Ward SG, Bacon K, Westwick J (1998) Chemokines and T lymphocytes: more than an attraction. Immunity 9: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Waisman A, Ruiz PJ, Hirschberg DL, Gelman A, Oksenberg JR, Brocke S, et al (1996) Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nat Med 2: 899–905

    Article  PubMed  CAS  Google Scholar 

  • Wildbaum G, Karin N (1999) Augmentation of natural immunity to a pro-inflammatory cytokine (TNF- alpha) by targeted DNA vaccine confers long-lasting resistance to experimental autoimmune encephalomyelitis. Gene Ther 6: 1128–1138

    Article  PubMed  CAS  Google Scholar 

  • Wildbaum G, Youssef S, Grabie N, Karin N (1998) Prevention of experimental autoimmune encephalomyelitis by antibodies to interferon gamma inducing factor. J Immunol 161: 6368–6374

    PubMed  CAS  Google Scholar 

  • Wildbaum G, Westermann J, Maor G, Karin N (2000a) A targeted DNA vaccine encoding fas igand defines its dual role in the regulation of experimental autoimmune encephalomyelitis. J Clin Invest 106: 671–679

    Article  CAS  Google Scholar 

  • Wildbaum G, Youssef S, Karin N (2000b) A targeted DNA vaccine augments the natural immune response to self TNF-alpha and suppresses ongoing adjuvant arthritis. J Immunol 165: 5860–5866

    CAS  Google Scholar 

  • Yednock TA, Cannon C, Fritz LC, Sanchez MF, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356: 63–66

    Article  PubMed  CAS  Google Scholar 

  • Youssef S, Wildbaum G, Maor G, Lanir N, Gour-Lavie A, Grabie N, et al (1998) Long lasting protective immunity to experimental autoimmune encephalomyelitis following vaccination with naked DNA encoding C-C chemokines. J Immunol 161: 3870–3879

    PubMed  CAS  Google Scholar 

  • Youssef S, Wildbaum G, Karin N (1999) Prevention of experimental autoimmune encephalomyelitis by MIP-1 alpha and MCP-1 naked DNA vaccines. J Autoimmun 13: 21–29

    Article  PubMed  CAS  Google Scholar 

  • Youssef S, Maor G, Wildbaum G, Grabie N, Gour-Lavie A, Karin N (2000) C-C chemokine-encoding DNA vaccines enhance breakdown of tolerance to their gene products and treat ongoing adjuvant arthritis. J Clin Invest 106: 361–371

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Karin, N. (2003). Treatment of autoimmune diseases by targeted DNA vaccines encoding proinflammatory mediators. In: Sticherling, M., Christophers, E. (eds) Treatment of Autoimmune Disorders. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6016-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6016-9_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7288-9

  • Online ISBN: 978-3-7091-6016-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics