Skip to main content

Functional Interactions of Prefrontal Cortex and the Hippocampus in Learning and Memory

  • Chapter
  • First Online:

Abstract

The prefrontal cortex (PFC) is associated with “executive function” and the hippocampus with declarative and episodic memory. Yet both the PFC and the hippocampus are described as “specialized for representing events that are extended in time” (Wilson et al. Trends Neurosci 33:533–540, 2010) and encoding sequences “of events that unfold over time” (Eichenbaum, Neuron 44:109–120, 2004). Bidirectional interactions between the two structures in an “intention-recollection” cycle (cf. Fuster et al. Brain Res 330:299–307, 1995) may describe how their complementary and distinct functions contribute to goal-directed learning and memory. Beyond “what, where, and when,” the external facts that define episodes (Morris 2001), hippocampal representations include “why and how.” These internal features include outcome expectancies and abstract rules computed by the PFC, extracted from outcomes integrated across many behavioral episodes. PFC signals stored along with high-level percepts in hippocampal representations can therefore guide memory retrieval. Hippocampal signals relayed to the PFC let remembered events select associated goal, rule, and procedure representations. The bidirectional interactions associate individual items with multiple goals and individual goals with multiple items. By including outcome expectancies and abstract rules as episodic elements in a content-addressable memory system, an “intention-recollection cycle” reduces proactive interference and guides selective memory retrieval.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez P, Eichenbaum H (2002) Representations of odors in the rat orbitofrontal cortex change during and after learning. Behav Neurosci 116:421–433

    PubMed  Google Scholar 

  • Asaad WF, Rainer G, Miller EK (2000) Task-specific neural activity in the primate prefrontal cortex. J Neurophysiol 84:451–459

    CAS  PubMed  Google Scholar 

  • Baddeley A (1996) The fractionation of working memory. Proc Natl Acad Sci U S A 93:13468–13472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Badre D, Wagner AD (2006) Computational and neurobiological mechanisms underlying cognitive flexibility. Proc Natl Acad Sci U S A 103:7186–7191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bahar AS, Shapiro ML (2012a) Remembering to learn: independent place and journey coding mechanisms contribute to memory transfer. J Neurosci 32:2191–2203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bahar AS, Shapiro ML (2012b) Remembering to learn: independent place and journey coding mechanisms contribute to memory transfer. J Neurosci 32:2191–2203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bahar AS, Shirvalkar PR, Shapiro ML (2011) Memory-guided learning: CA1 and CA3 neuronal ensembles differentially encode the commonalities and differences between situations. J Neurosci 31:12270–12281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50:7–15

    CAS  PubMed  Google Scholar 

  • Berg EA (1948) A simple objective technique for measuring flexibility in thinking. J Gen Psychol 39:15–22

    CAS  PubMed  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    CAS  PubMed  Google Scholar 

  • Blumenfeld RS, Ranganath C (2007) Prefrontal cortex and long-term memory encoding: an integrative review of findings from neuropsychology and neuroimaging. Neuroscientist 13:280–291

    PubMed  Google Scholar 

  • Blumenfeld RS, Parks CM, Yonelinas AP, Ranganath C (2011) Putting the pieces together: the role of dorsolateral prefrontal cortex in relational memory encoding. J Cogn Neurosci 23:257–265

    PubMed  Google Scholar 

  • Boulougouris V, Dalley JW, Robbins TW (2007) Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res 179:219–228

    PubMed  Google Scholar 

  • Brewer JB, Zhao Z, Desmond JE, Glover GH, Gabrieli JDE (1998) Making memories: brain activity that predicts how well visual experience will be remembered. Science 281:1185–1187

    CAS  PubMed  Google Scholar 

  • Brown TI, Ross RS, Keller JB, Hasselmo ME, Stern CE (2010) Which way was I going? Contextual retrieval supports the disambiguation of well learned overlapping navigational routes. J Neurosci 30:7414–7422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Browning PG, Gaffan D (2008) Prefrontal cortex function in the representation of temporally complex events. J Neurosci 28:3934–3940

    CAS  PubMed  Google Scholar 

  • Browning PG, Baxter MG, Gaffan D (2013) Prefrontal-temporal disconnection impairs recognition memory but not familiarity discrimination. J Neurosci 33:9667–9674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bunge SA, Wallis JD, Parker A, Brass M, Crone EA, Hoshi E, Sakai K (2005) Neural circuitry underlying rule use in humans and nonhuman primates. J Neurosci 25:10347–10350

    CAS  PubMed  Google Scholar 

  • Bussey TJ, Wise SP, Murray EA (2001) The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behav Neurosci 115:971–982

    CAS  PubMed  Google Scholar 

  • Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    CAS  PubMed  Google Scholar 

  • Buzsaki G (2006) Rhythms of the brain. Oxford University Press, New York

    Google Scholar 

  • Buzsaki G (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68:362–385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    CAS  PubMed  Google Scholar 

  • Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    CAS  PubMed  Google Scholar 

  • Cholvin T, Loureiro M, Cassel R, Cosquer B, Geiger K, De Sa ND, Raingard H, Robelin L, Kelche C, Pereira d V, Cassel JC (2013) The ventral midline thalamus contributes to strategy shifting in a memory task requiring both prefrontal cortical and hippocampal functions. J Neurosci 33:8772–8783

    CAS  PubMed  Google Scholar 

  • Churchwell JC, Morris AM, Musso ND, Kesner RP (2010) Prefrontal and hippocampal contributions to encoding and retrieval of spatial memory. Neurobiol Learn Mem 93:415–421

    PubMed  Google Scholar 

  • Clayton NS, Dickinson A (1998) Episodic-like memory during cache recovery by scrub jays. Nature 395:272–274

    CAS  PubMed  Google Scholar 

  • Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357

    CAS  PubMed  Google Scholar 

  • Constantinidis C, Franowicz MN, Goldman-Rakic PS (2001) The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat Neurosci 4:311–316

    CAS  PubMed  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    CAS  PubMed  Google Scholar 

  • Di Prisco GV, Vertes RP (2006) Excitatory actions of the ventral midline thalamus (rhomboid/reuniens) on the medial prefrontal cortex in the rat. Synapse 60:45–55

    PubMed  Google Scholar 

  • Dias R, Aggleton JP (2000) Effects of selective excitotoxic prefrontal lesions on acquisition of nonmatching- and matching-to-place in the T-maze in the rat: differential involvement of the prelimbic-infralimbic and anterior cingulate cortices in providing behavioural flexibility. Eur J Neurosci 12:4457–4466

    CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72

    CAS  PubMed  Google Scholar 

  • Diba K, Buzsaki G (2007) Forward and reverse hippocampal place-cell sequences during ripples. Nat Neurosci 10:1241–1242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dudchenko PA, Wood ER (2014) Splitter cells: hippocampal place cells whose firing is modulated by where the animal is going, or where it has been. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Dumont JR, Aggleton JP (2013) Dissociation of recognition and recency memory judgments after anterior thalamic nuclei lesions in rats. Behav Neurosci 127:415–431

    PubMed Central  PubMed  Google Scholar 

  • Durstewitz D, Vittoz NM, Floresco SB, Seamans JK (2010) Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning. Neuron 66:438–448

    CAS  PubMed  Google Scholar 

  • Eichenbaum H (2004) Hippocampus; cognitive processes and neural representations that underlie declarative memory. Neuron 44:109–120

    CAS  PubMed  Google Scholar 

  • Eichenbaum H, Dudchenko P, Wood E, Shapiro M, Tanila H (1999) The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23:209–226

    CAS  PubMed  Google Scholar 

  • Eichenbaum H, MacDonald CJ, Kraus BJ (2014) Time and the hippocampus. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425:184–188

    CAS  PubMed  Google Scholar 

  • Euston DR, McNaughton BL (2006) Apparent encoding of sequential context in rat medial prefrontal cortex is accounted for by behavioral variability. J Neurosci 26:13143–13155

    CAS  PubMed  Google Scholar 

  • Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal cortex in memory and decision making. Neuron 76:1057–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fellows LK, Farah MJ (2005) Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cereb Cortex 15:58–63

    PubMed  Google Scholar 

  • Ferbinteanu J, Shapiro ML (2003) Prospective and retrospective memory coding in the hippocampus. Neuron 40:1227–1239

    CAS  PubMed  Google Scholar 

  • Ferbinteanu J, Kennedy PJ, Shapiro ML (2006) Episodic memory – from brain to mind. Hippocampus 16:691–703

    PubMed  Google Scholar 

  • Ferbinteanu J, Shirvalkar P, Shapiro ML (2011) Memory modulates journey-dependent coding in the rat hippocampus. J Neurosci 31:9135–9146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Floresco SB, Seamans JK, Phillips AG (1997) Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 17:1880–1890

    CAS  PubMed  Google Scholar 

  • Floresco SB, Braaksma DN, Phillips AG (1999) Thalamic-cortical-striatal circuitry subserves working memory during delayed responding on a radial arm maze. J Neurosci 19:11061–11071

    CAS  PubMed  Google Scholar 

  • Fortin NJ, Agster KL, Eichenbaum HB (2002) Critical role of the hippocampus in memory for sequences of events. Nat Neurosci 5:458–462

    CAS  PubMed  Google Scholar 

  • Foster DJ, Wilson MA (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:680–683

    CAS  PubMed  Google Scholar 

  • Foster DJ, Wilson MA (2007) Hippocampal theta sequences. Hippocampus 17:1093–1099

    PubMed  Google Scholar 

  • Frank LM, Brown EN, Wilson M (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27(1):169–178

    CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63:814–831

    CAS  PubMed  Google Scholar 

  • Funahashi S, Chafee MV, Goldman-Rakic PS (1993) Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365:753–756

    CAS  PubMed  Google Scholar 

  • Fuster JM (1995) Memory in the cerebral cortex. MIT Press, Cambridge, MA

    Google Scholar 

  • Fuster JM (2008) The prefrontal cortex. Academic, Elsevier, Amsterdam

    Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    CAS  PubMed  Google Scholar 

  • Fuster JM, Alexander GE (1973) Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. Brain Res 61:79–91

    CAS  PubMed  Google Scholar 

  • Fuster JM, Bressler SL (2012) Cognit activation: a mechanism enabling temporal integration in working memory. Trends Cogn Sci 16:207–218

    PubMed Central  PubMed  Google Scholar 

  • Fuster JM, Jervery JP (1981) Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 22:952–955

    Google Scholar 

  • Fuster JM, Bauer RH, Jervey JP (1985) Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res 330:299–307

    CAS  PubMed  Google Scholar 

  • Fuster J (1989) The prefrontal cortex. Raven, New York

    Google Scholar 

  • Fuster J, Bodner M, Kroger J (2000) Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405:347–351

    CAS  PubMed  Google Scholar 

  • Fuster JM (2007) Jackson and the frontal executive hierarchy. Int J Psychophysiol 64:106–107

    PubMed  Google Scholar 

  • Gaffan D, Easton A, Parker A (2002) Interaction of inferior temporal cortex with frontal cortex and basal forebrain: double dissociation in strategy implementation and associative learning. J Neurosci 22:7288–7296

    CAS  PubMed  Google Scholar 

  • Gazzaley A, Rissman J, D'Esposito M (2004) Functional connectivity during working memory maintenance. Cogn Affect Behav Neurosci 4:580–599

    PubMed  Google Scholar 

  • Gelbard-Sagiv H, Mukamel R, Harel M, Malach R, Fried I (2008) Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322:96–101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    CAS  PubMed  Google Scholar 

  • Gershberg FB, Shimamura AP (1995) Impaired use of organizational strategies in free recall following frontal lobe damage. Neuropsychology 33:1305–1333

    CAS  Google Scholar 

  • Ghods-Sharifi S, Haluk DM, Floresco SB (2008) Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Neurobiol Learn Mem 89:567–573

    PubMed  Google Scholar 

  • Girardeau G, Benchenane K, Wiener SI, Buzsaki G, Zugaro MB (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12:1222–1223

    CAS  PubMed  Google Scholar 

  • Gisquet-Verrier P, Delatour B (2006) The role of the rat prelimbic/infralimbic cortex in working memory: not involved in the short-term maintenance but in monitoring and processing functions. Neuroscience 141:585–596

    CAS  PubMed  Google Scholar 

  • Grant DA, Berg EA (1948) A behavioural analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type cardsorting problem. J Exp Psychol 12:404–411

    Google Scholar 

  • Guise KK, Shapiro ML (2012). Hippocampal - prefrontal synchrony during switching between hippocampal dependent and independent tasks. In: 2012 Neuroscience Meeting Planner. Program No. 497.28/DDD20. Society for Neuroscience, San Diego, CA (Online)

    Google Scholar 

  • Hampson RE, Simeral JD, Deadwyler SA (2002) “Keeping on track”: firing of hippocampal neurons during delayed-nonmatch-to-sample performance. J Neurosci 22:RC198

    PubMed  Google Scholar 

  • Hannula DE, Tranel D, Cohen NJ (2006) The long and short of it: relational memory impairment in amnesia, even at short lags. J Neurosci 26:8352–8359

    CAS  PubMed  Google Scholar 

  • Hasselmo ME, Bodelon C, Wyble BP (2002) A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput 14:793–817

    PubMed  Google Scholar 

  • Hembrook JR, Mair RG (2011) Lesions of reuniens and rhomboid thalamic nuclei impair radial maze win-shift performance. Hippocampus 21:815–826

    PubMed Central  PubMed  Google Scholar 

  • Hornak J, O’Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR, Polkey CE (2004) Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 16:463–478

    CAS  PubMed  Google Scholar 

  • Horst NK, Laubach M (2009) The role of rat dorsomedial prefrontal cortex in spatial working memory. Neuroscience 164:444–456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horst NK, Laubach M (2012) Working with memory: evidence for a role for the medial prefrontal cortex in performance monitoring during spatial delayed alternation. J Neurophysiol 108:3276–3288

    PubMed Central  PubMed  Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    CAS  PubMed  Google Scholar 

  • Hyman JM, Zilli EA, Paley AM, Hasselmo ME (2005) Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus 15:739–749

    PubMed  Google Scholar 

  • Hyman JM, Zilli EA, Paley AM, Hasselmo ME (2010) Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates. Front Integr Neurosci 4:2

    PubMed Central  PubMed  Google Scholar 

  • Izquierdo A, Suda RK, Murray EA (2004) Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J Neurosci 24:7540–7548

    CAS  PubMed  Google Scholar 

  • Jacobsen CF (1935) Functions of frontal association area in primates. Arch Neurol Psychiatr 33:558–569

    Google Scholar 

  • Jadhav SP, Frank LM (2014) Memory replay in the hippocampus. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Jadhav SP, Kemere C, German PW, Frank LM (2012) Awake hippocampal sharp-wave ripples support spatial memory. Science 336:1454–1458

    CAS  PubMed  Google Scholar 

  • Jay TM, Burette F, Laroche S (1996) Plasticity of the hippocampal-prefrontal cortex synapses. J Physiol Paris 90:361–366

    CAS  PubMed  Google Scholar 

  • Jenkins LJ, Ranganath C (2010) Prefrontal and medial temporal lobe activity at encoding predicts temporal context memory. J Neurosci 30:15558–15565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson A, Redish AD (2007) Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci 27:12176–12189

    CAS  PubMed  Google Scholar 

  • Jones B, Mishkin M (1972) Limbic lesions and the problem of stimulus-reinforcement associations. Exp Neurol 36:362–377

    CAS  PubMed  Google Scholar 

  • Jones MW, Wilson MA (2005) Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol 3:e402

    PubMed Central  PubMed  Google Scholar 

  • Jost K, Khader PH, Dusel P, Richter FR, Rohde KB, Bien S, Rosler F (2012) Controlling conflict from interfering long-term memory representations. J Cogn Neurosci 24:1173–1190

    PubMed  Google Scholar 

  • Jung MW, Qin Y, McNaughton BL, Barnes CA (1998) Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cereb Cortex 8:437–450

    CAS  PubMed  Google Scholar 

  • Kao YC, Davis ES, Gabrieli JD (2005) Neural correlates of actual and predicted memory formation. Nat Neurosci 8:1776–1783

    CAS  PubMed  Google Scholar 

  • Kelemen E, Fenton AA (2010) Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biol 8:e1000403

    PubMed Central  PubMed  Google Scholar 

  • Kennedy PJ, Shapiro ML (2004) Retrieving memories via internal context requires the hippocampus. J Neurosci 24:6979–6985

    CAS  PubMed  Google Scholar 

  • Kennedy PJ, Shapiro ML (2009) Motivational states activate distinct hippocampal representations to guide goal-directed behaviors. Proc Natl Acad Sci U S A 106:10805–10810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kennerley SW, Wallis JD (2009) Encoding of reward and space during a working memory task in the orbitofrontal cortex and anterior cingulate sulcus. J Neurophysiol 102:3352–3364

    PubMed Central  PubMed  Google Scholar 

  • Kentros C (2006) Hippocampal place cells: the “where” of episodic memory? Hippocampus 16:743–754

    PubMed  Google Scholar 

  • Kim J, Ragozzino ME (2005) The involvement of the orbitofrontal cortex in learning under changing task contingencies. Neurobiol Learn Mem 83:125–133

    PubMed Central  PubMed  Google Scholar 

  • Komorowski RW, Manns JR, Eichenbaum H (2009) Robust conjunctive item-place coding by hippocampal neurons parallels learning what happens where. J Neurosci 29:9918–9929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komorowski RW, Garcia CG, Wilson A, Hattori S, Howard MW, Eichenbaum H (2013) Ventral hippocampal neurons are shaped by experience to represent behaviorally relevant contexts. J Neurosci 33:8079–8087

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kraus BJ, Robinson RJ, White JA, Eichenbaum H, Hasselmo ME (2013) Hippocampal “Time Cells”: time versus path integration. Neuron 78:1090–1101

    CAS  PubMed  Google Scholar 

  • Law LM, Smith DM (2012) The anterior thalamus is critical for overcoming interference in a context-dependent odor discrimination task. Behav Neurosci 126:710–719

    PubMed Central  PubMed  Google Scholar 

  • Lee I, Kesner RP (2003) Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory. J Neurosci 23:1517–1523

    CAS  PubMed  Google Scholar 

  • Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–1194

    CAS  PubMed  Google Scholar 

  • Lesburgueres E, Gobbo OL, Aux-Cantin S, Hambucken A, Trifilieff P, Bontempi B (2011) Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331:924–928

    CAS  PubMed  Google Scholar 

  • Leutgeb S, Leutgeb JK (2014) Remapping to discriminate contexts with hippocampal population codes. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Lever C, Kaplan R, Burgess N (2014) The function of oscillations in the hippocampal formation. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Levine B, Stuss DT, Milberg WP, Alexander MP, Schwartz M, Macdonald R (1998) The effects of focal and diffuse brain damage on strategy application: evidence from focal lesions, traumatic brain injury and normal aging. J Int Neuropsychol Soc 4:247–264

    CAS  PubMed  Google Scholar 

  • Levy DJ, Glimcher PW (2012) The root of all value: a neural common currency for choice. Curr Opin Neurobiol 22:1027–1038

    CAS  PubMed  Google Scholar 

  • Lisman J, Buzsaki G (2008) A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr Bull 34:974–980

    PubMed Central  PubMed  Google Scholar 

  • Lisman J, Redish AD (2009) Prediction, sequences and the hippocampus. Philos Trans R Soc Lond B Biol Sci 364:1193–1201

    PubMed Central  PubMed  Google Scholar 

  • London ED, Ernst M, Grant S, Bonson K, Weinstein A (2000) Orbitofrontal cortex and human drug abuse: functional imaging. Cereb Cortex 10:334–342

    CAS  PubMed  Google Scholar 

  • Loureiro M, Cholvin T, Lopez J, Merienne N, Latreche A, Cosquer B, Geiger K, Kelche C, Cassel JC, Pereira d V (2012) The ventral midline thalamus (reuniens and rhomboid nuclei) contributes to the persistence of spatial memory in rats. J Neurosci 32:9947–9959

    CAS  PubMed  Google Scholar 

  • MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H (2011) Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71(4):737–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maguire EA, Hassabis D (2011) Role of the hippocampus in imagination and future thinking. Proc Natl Acad Sci U S A 108:E39

    PubMed Central  PubMed  Google Scholar 

  • Mankin EA, Sparks FT, Slayyeh B, Sutherland RJ, Leutgeb S, Leutgeb JK (2012) Neuronal code for extended time in the hippocampus. Proc Natl Acad Sci U S A 109:19462–19467

    CAS  PubMed Central  PubMed  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    PubMed  Google Scholar 

  • McDonald RJ, White NM (1993) A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav Neurosci 107:3–22

    CAS  PubMed  Google Scholar 

  • McEchron MD, Disterhoft JF (1997) Sequence of single neuron changes in CA1 hippocampus of rabbits during acquisition of trace eyeblink conditioned responses. J Neurophysiol 78:1030–1044

    CAS  PubMed  Google Scholar 

  • McKenna JT, Vertes RP (2004) Afferent projections to nucleus reuniens of the thalamus. J Comp Neurol 480:115–142

    PubMed  Google Scholar 

  • Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74

    CAS  PubMed  Google Scholar 

  • Milad MR, Vidal-Gonzalez I, Quirk GJ (2004) Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behav Neurosci 118:389–394

    CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    CAS  PubMed  Google Scholar 

  • Miller BT, D’Esposito M (2012) Spatial and temporal dynamics of cortical networks engaged in memory encoding and retrieval. Front Hum Neurosci 6:109

    PubMed Central  PubMed  Google Scholar 

  • Milner B (1963) Effects of different brain lesions on card sorting. Arch Neurol 9:90–100

    Google Scholar 

  • Mishkin M (1964) Perseveration of central sets after frontal lesions in monkeys. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill, New York, pp 219–241

    Google Scholar 

  • Morris RG (2001) Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 356:1453–1465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray EA, Rudebeck PH (2013) The drive to strive: goal generation based on current needs. Front Neurosci 7:112

    PubMed Central  PubMed  Google Scholar 

  • Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G (1999) Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19:9497–9507

    CAS  PubMed  Google Scholar 

  • Narayanan NS, Laubach M (2009) Delay activity in rodent frontal cortex during a simple reaction time task. J Neurophysiol 101:2859–2871

    PubMed  Google Scholar 

  • Navawongse R, Eichenbaum H (2013) Distinct pathways for rule-based retrieval and spatial mapping of memory representations in hippocampal neurons. J Neurosci 33:1002–1013

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001) Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 4:95–102

    PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    PubMed  Google Scholar 

  • O’Keefe J, Speakman A (1987) Single unit activity in the rat hippocampus during a spatial memory task. Exp Brain Res 68:1–27

    PubMed  Google Scholar 

  • O’Neill PK, Gordon JA, Sigurdsson T (2013) Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. J Neurosci 33:14211–14224

    PubMed Central  PubMed  Google Scholar 

  • Olton DS, Becker JT, Handelmann GH (1979) Hippocampus, space and memory. Behav Brain Sci 2:313–365

    Google Scholar 

  • Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW (1991) Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalohippocampectomy in man. Neuropsychology 29:993–1006

    CAS  Google Scholar 

  • Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pastalkova E, Itskov V, Amarasingham A, Buzsaki G (2008) Internally generated cell assembly sequences in the rat hippocampus. Science 321:1322–1327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pavlides C, Winson J (1989) Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J Neurosci 9:2907–2918

    CAS  PubMed  Google Scholar 

  • Peters GJ, David CN, Marcus MD, Smith DM (2013) The medial prefrontal cortex is critical for memory retrieval and resolving interference. Learn Mem 20:201–209

    PubMed  Google Scholar 

  • Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN (2012) The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48:46–57

    PubMed  Google Scholar 

  • Pfeiffer BE, Foster DJ (2013) Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497:74–79

    CAS  PubMed  Google Scholar 

  • Pickens CL, Saddoris MP, Setlow B, Gallagher M, Holland PC, Schoenbaum G (2003) Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J Neurosci 23:11078–11084

    CAS  PubMed  Google Scholar 

  • Prasad JA, Chudasama Y (2013) Viral tracing identifies parallel disynaptic pathways to the hippocampus. J Neurosci 33:8494–8503

    CAS  PubMed  Google Scholar 

  • Pratt WE, Mizumori SJ (2001) Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential rewards in a spatial memory task. Behav Brain Res 123:165–183

    CAS  PubMed  Google Scholar 

  • Preuss TM (1995) Do rats have prefrontal cortex? J Cogn Neurosci 7(1):1–24

    CAS  PubMed  Google Scholar 

  • Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107

    CAS  PubMed  Google Scholar 

  • Ragozzino ME, Kesner RP (2001) The role of rat dorsomedial prefrontal cortex in working memory for egocentric responses. Neurosci Lett 308:145–148

    CAS  PubMed  Google Scholar 

  • Ragozzino ME, Adams S, Kesner RP (1998) Differential involvement of the dorsal anterior cingulate and prelimbic- infralimbic areas of the rodent prefrontal cortex in spatial working memory. Behav Neurosci 112:293–303

    CAS  PubMed  Google Scholar 

  • Ragozzino ME, Detrick S, Kesner RP (1999a) Involvement of the prelimbic-infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. J Neurosci 19:4585–4594

    CAS  PubMed  Google Scholar 

  • Ragozzino ME, Wilcox C, Raso M, Kesner RP (1999b) Involvement of rodent prefrontal cortex subregions in strategy switching. Behav Neurosci 113:32–41

    CAS  PubMed  Google Scholar 

  • Ragozzino ME, Kim J, Hassert D, Minniti N, Kiang C (2003) The contribution of the rat prelimbic-infralimbic areas to different forms of task switching. Behav Neurosci 117:1054–1065

    PubMed  Google Scholar 

  • Rainer G, Rao SC, Miller EK (1999) Prospective coding for objects in primate prefrontal cortex. J Neurosci 19:5493–5505

    CAS  PubMed  Google Scholar 

  • Ramus SJ, Eichenbaum H (2000) Neural correlates of olfactory recognition memory in the rat orbitofrontal cortex. J Neurosci 20:8199–8208

    CAS  PubMed  Google Scholar 

  • Riceberg JS, Shapiro ML (2012) Reward stability determines the contribution of the orbitofrontal cortex to adaptive behavior. J Neurosci 32(46):16402–16409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rich EL, Shapiro ML (2007) Prelimbic/infralimbic inactivation impairs memory for multiple task switches, but not flexible selection of familiar tasks. J Neurosci 27:4747–4755

    CAS  PubMed  Google Scholar 

  • Rich EL, Shapiro ML (2007a) Prelimbic/infralimbic inactivation impairs memory for multiple task switches, but not flexible selection of familiar tasks. J Neurosci 27:4747–4755

    CAS  PubMed  Google Scholar 

  • Rich EL, Shapiro ML (2007b) Prelimbic/infralimbic inactivation impairs memory for multiple task switches, but not flexible selection of familiar tasks. J Neurosci 27:4747–4755

    CAS  PubMed  Google Scholar 

  • Rich EL, Shapiro M (2009) Rat prefrontal cortical neurons selectively code strategy switches. J Neurosci 29:7208–7219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND, Miller EK, Fusi S (2013) The importance of mixed selectivity in complex cognitive tasks. Nature 497:585–590

    CAS  PubMed  Google Scholar 

  • Robbe D, Buzsaki G (2009) Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment. J Neurosci 29:12597–12605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roesch MR, Stalnaker TA, Schoenbaum G (2007) Associative encoding in anterior piriform cortex versus orbitofrontal cortex during odor discrimination and reversal learning. Cereb Cortex 17:643–652

    PubMed Central  PubMed  Google Scholar 

  • Ross RS, Sherrill KR, Stern CE (2011) The hippocampus is functionally connected to the striatum and orbitofrontal cortex during context dependent decision making. Brain Res 1423:53–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudebeck PH, Saunders RC, Prescott AT, Chau LS, Murray EA (2013) Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat Neurosci 16:1140–1145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakurai Y (1990) Cells in the rat auditory system have sensory-delay correlates during the performance of an auditory working memory task. Behav Neurosci 104(6):856–868

    CAS  PubMed  Google Scholar 

  • Sakurai Y (1994) Involvement of auditory cortical and hippocampal neurons in auditory working memory and reference memory in the rat. J Neurosci 14:2606–2623

    CAS  PubMed  Google Scholar 

  • Sakurai Y, Sugimoto S (1986) Multiple unit activity of prefrontal cortex and dorsomedial thalamus during delayed go/no-go alternation in the rat. Behav Brain Res 20:295–301

    CAS  PubMed  Google Scholar 

  • Schoenbaum G, Eichenbaum H (1995a) Information coding in the rodent prefrontal cortex. I. Single- neuron activity in orbitofrontal cortex compared with that in piriform cortex. J Neurophysiol 74:733–750

    CAS  PubMed  Google Scholar 

  • Schoenbaum G, Eichenbaum H (1995b) Information coding in the rodent prefrontal cortex. II. Ensemble activity in orbitofrontal cortex. J Neurophysiol 74:751–762

    CAS  PubMed  Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (1998) Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci 1:155–159

    CAS  PubMed  Google Scholar 

  • Schoenbaum G, Chiba AA, Gallagher M (1999) Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J Neurosci 19

    Google Scholar 

  • Schoenbaum G, Nugent SL, Saddoris MP, Setlow B (2002) Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. NeuroReport 13:885–890

    PubMed  Google Scholar 

  • Schoenbaum G, Setlow B, Nugent SL, Saddoris MP, Gallagher M (2003) Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn Mem 10:129–140

    PubMed Central  PubMed  Google Scholar 

  • Schoenbaum G, Saddoris MP, Stalnaker TA (2007) Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectancies. Ann NY Acad Sci 1121:320–335

    PubMed Central  PubMed  Google Scholar 

  • Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci 10:885–892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seip-Cammack K, Guise KG, Shapiro ML (2013) Transient inactivation of hippocampal-prefrontal circuitry impairs spatial reversal learning (in prep)

    Google Scholar 

  • Shapiro ML, Ferbinteanu J (2006) Relative spike timing in pairs of hippocampal neurons distinguishes the beginning and end of journeys. Proc Natl Acad Sci U S A 103:4287–4292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shepp BE, EIMAS PD (1964) Intradimensional and extradimensional shifts in the rat. J Comp Physiol Psychol 57:357–361

    CAS  PubMed  Google Scholar 

  • Shirvalkar PR, Rapp PR, Shapiro ML (2010) Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodes. Proc Natl Acad Sci U S A 107:7054–7059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siapas AG, Lubenov EV, Wilson MA (2005) Prefrontal phase locking to hippocampal theta oscillations. Neuron 46:141–151

    CAS  PubMed  Google Scholar 

  • Sidman M, Stoddard LT, Mohr JP (1968) Some additional quantitative observations of immediate memory in a patient with bilateral hippocampal lesions. Neuropsychologia 6:245–254

    Google Scholar 

  • Siegel JJ, Kalmbach B, Chitwood RA, Mauk MD (2012) Persistent activity in a cortical-to-subcortical circuit: bridging the temporal gap in trace eyelid conditioning. J Neurophysiol 107:50–64

    PubMed Central  PubMed  Google Scholar 

  • Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36:529–538

    PubMed Central  PubMed  Google Scholar 

  • Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA (2010) Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464:763–767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172

    CAS  PubMed  Google Scholar 

  • Stalnaker TA, Franz TM, Singh T, Schoenbaum G (2007) Basolateral amygdala lesions abolish orbitofrontal-dependent reversal impairments. Neuron 54:51–58

    CAS  PubMed  Google Scholar 

  • Stark E, Eichler R, Roux L, Fujisawa S, Rotstein HG, Buzsaki G (2013) Inhibition induced theta resonance in cortical circuits. Neuron 80:1263–1276

    CAS  PubMed  Google Scholar 

  • Takehara-Nishiuchi K, McNaughton BL (2008) Spontaneous changes of neocortical code for associative memory during consolidation. Science 322:960–963

    CAS  PubMed  Google Scholar 

  • Takehara-Nishiuchi K, Nakao K, Kawahara S, Matsuki N, Kirino Y (2006) Systems consolidation requires postlearning activation of NMDA receptors in the medial prefrontal cortex in trace eyeblink conditioning. J Neurosci 26:5049–5058

    CAS  PubMed  Google Scholar 

  • Teuber HL (2009) The riddle of frontal lobe function in man. 1964. Neuropsychol Rev 19:25–46

    PubMed  Google Scholar 

  • Teyler TJ, DiScenna P (1986) The hippocampal memory indexing theory. Behav Neurosci 100:147–154

    CAS  PubMed  Google Scholar 

  • Tsuchida A, Doll BB, Fellows LK (2010) Beyond reversal: a critical role for human orbitofrontal cortex in flexible learning from probabilistic feedback. J Neurosci 30:16868–16875

    CAS  PubMed  Google Scholar 

  • Uylings HBM, Van Eden CG (1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 85:31–62

    CAS  PubMed  Google Scholar 

  • Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146:3–17

    PubMed  Google Scholar 

  • van der Matthijs AA, Meer RI, Lansink CS, Pennartz CMA (2014) Hippocampal projections to the ventral striatum: from spatial memory to motivated behavior. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26:407–418

    CAS  PubMed  Google Scholar 

  • Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20

    CAS  PubMed  Google Scholar 

  • Vertes RP, Hoover WB, Szigeti-Buck K, Leranth C (2007) Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res Bull 71:601–609

    PubMed  Google Scholar 

  • Wallis JD, Miller EK (2003) Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur J Neurosci 18:2069–2081

    PubMed  Google Scholar 

  • Wallis JD, Anderson KC, Miller EK (2001) Single neurons in prefrontal cortex encode abstract rules. Nature 411:953–956

    CAS  PubMed  Google Scholar 

  • Walton ME, Behrens TE, Buckley MJ, Rudebeck PH, Rushworth MF (2010) Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron 65:927–939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang GW, Cai JX (2006) Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats. Behav Brain Res 175:329–336

    PubMed  Google Scholar 

  • Warden MR, Miller EK (2007) The representation of multiple objects in prefrontal neuronal delay activity. Cereb Cortex 17(Suppl 1):i41–i50

    PubMed  Google Scholar 

  • Warden MR, Miller EK (2010) Task-dependent changes in short-term memory in the prefrontal cortex. J Neurosci 30:15801–15810

    CAS  PubMed Central  PubMed  Google Scholar 

  • White NM (2008) Multiple memory systems in the brain: cooperation and competition. In: Byrne JH (ed) Learning and memory: a comprehensive reference. Elsevier, London, UK, pp 9–46

    Google Scholar 

  • White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126:315–335

    CAS  PubMed  Google Scholar 

  • Wickelgren WA (1992) Webs, cell assemblies, and chunking in neural nets. Concepts Neurosci 3:1–53

    Google Scholar 

  • Wilson CR, Gaffan D (2008) Prefrontal-inferotemporal interaction is not always necessary for reversal learning. J Neurosci 28:5529–5538

    CAS  PubMed  Google Scholar 

  • Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space [see comments]. Science 261:1055–1058 [published erratum appears in Science 1994 Apr 1; 264(5155):16]

    CAS  PubMed  Google Scholar 

  • Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep [see comments]. Science 265:676–679

    CAS  PubMed  Google Scholar 

  • Wilson CR, Baxter MG, Easton A, Gaffan D (2008) Addition of fornix transection to frontal-temporal disconnection increases the impairment in object-in-place memory in macaque monkeys. Eur J Neurosci 27:1814–1822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson CR, Gaffan D, Browning PG, Baxter MG (2010) Functional localization within the prefrontal cortex: missing the forest for the trees? Trends Neurosci 33:533–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winocur G (1992) A comparison of normal old rats and young adult rats with lesions to the hippocampus or prefrontal cortex on a test of matching-to-sample. Neuropsychology 30:769–781

    CAS  Google Scholar 

  • Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H (2000) Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27:623–633

    CAS  PubMed  Google Scholar 

  • Xu W, Sudhof TC (2013) A neural circuit for memory specificity and generalization. Science 339:1290–1295

    CAS  PubMed  Google Scholar 

  • Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M (2012) The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48:58–81

    PubMed Central  PubMed  Google Scholar 

  • Yoon T, Okada J, Jung MW, Kim JJ (2008) Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learn Mem 15:97–105

    PubMed Central  PubMed  Google Scholar 

  • Young JJ, Shapiro ML (2009) Double dissociation and hierarchical organization of strategy switches and reversals in the rat PFC. Behav Neurosci 123:1028–1035

    PubMed Central  PubMed  Google Scholar 

  • Young JJ, Shapiro ML (2011a) Dynamic coding of goal-directed paths by orbital prefrontal cortex. J Neurosci 31:5989–6000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young JJ, Shapiro ML (2011b) The orbitofrontal cortex and response selection. Ann N Y Acad Sci 1239:25–32

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Shapiro, M.L., Riceberg, J.S., Seip-Cammack, K., Guise, K.G. (2014). Functional Interactions of Prefrontal Cortex and the Hippocampus in Learning and Memory. In: Derdikman, D., Knierim, J. (eds) Space,Time and Memory in the Hippocampal Formation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1292-2_19

Download citation

Publish with us

Policies and ethics