Skip to main content

Spinal cord injury and its treatment: current management and experimental perspectives

  • Chapter
Advances and Technical Standards in Neurosurgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 38))

Abstract

Clinical management of spinal cord injury (SCI) has significantly improved its general prognosis. However, to date, traumatic paraplegia and tetraplegia remain incurable, despite massive research efforts. Current management focuses on surgical stabilisation of the spine, intensive neurological rehabilitation, and the prevention and treatment of acute and chronic complications. Prevention remains the most efficient strategy and should be the main focus of public health efforts. Nevertheless, major advances in the understanding of the pathophysiological mechanisms of SCI open promising new therapeutic perspectives. Even if complete recovery remains elusive due to the complexity of spinal cord repair, a strategy combining different approaches may result in some degree of neurological improvement after SCI. Even slight neurological recovery can have high impact on the daily functioning of severely handicapped patients and, thus, result in significant improvements in quality of life.

The main investigated strategies are: [1] initial neuroprotection, in order to decrease secondary injury to the spinal cord parenchyma after the initial insult; [2] spinal cord repair, in order to bridge the lesion site and reestablish the connection between the supraspinal centres and the deafferented cord segment below the lesion; and [3] re-training and enhancing plasticity of the central nervous system circuitry that was preserved or rebuilt after the injury.

Now and in the future, treatment strategies that have both a convincing rationale and seen their efficacy confirmed reproducibly in the experimental setting must carefully be brought from bench to bedside. In order to obtain clinically significant results, their introduction into clinical research must be guided by scientific rigour, and their coordination must be rationally structured in a long-term perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blumer CE, Quine S (1995) Prevalence of spinal cord injury: an international comparison. Neuroepidemiology 14: 258–68

    Article  PubMed  CAS  Google Scholar 

  2. Wyndaele M, Wyndaele JJ (2006) Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 44: 523–29

    Article  PubMed  CAS  Google Scholar 

  3. Kennedy P, Lude P, Taylor N (2006) Quality of life, social participation, appraisals and coping post spinal cord injury: a review of four community samples. Spinal Cord 44: 95–105

    Article  PubMed  CAS  Google Scholar 

  4. Kennedy P, Lude P, Taylor N(2010) Spinal cord injury facts and figures at a glance. J Spinal Cord Med 33: 439–40

    Google Scholar 

  5. Kennedy P, Lude P, Taylor N(2005) Spinal cord injury. Facts and figures at a glance. J Spinal Cord Med 28: 379–80

    Google Scholar 

  6. Wilson C, Willis C, Hendrikz JK, Le Brocque R, Bellamy N (2010) Speed cameras for the prevention of road traffic injuries and deaths. Cochrane Database Syst Rev (11): CD004607

    Google Scholar 

  7. MacLeod JB, Digiacomo JC, Tinkoff G (2010) An evidence-based review: helmet efficacy to reduce head injury and mortality in motorcycle crashes: EAST practice management guidelines. J Trauma 69: 1101–11

    Article  PubMed  Google Scholar 

  8. Crompton JG, Bone C, Oyetunji T et al. (2011) Motorcycle helmets associated with lower risk of cervical spine injury: debunking the myth. J Am Coll Surg 212: 295–300

    Article  PubMed  Google Scholar 

  9. Jagger J (1992) Prevention of brain trauma by legislation, regulation, and improved technology: a focus on motor vehicles. J Neurotrauma 9 (Suppl 1): S 313–16

    Google Scholar 

  10. Wells S, Mullin B, Norton R et al. (2004) Motorcycle rider conspicuity and crash related injury: case-control study. BMJ 328: 857

    Article  PubMed  Google Scholar 

  11. Richter ED, Friedman LS, Berman T, Rivkind A (2005) Death and injury from motor vehicle crashes: a tale of two countries. Am J Prev Med 29: 440–49

    Article  PubMed  Google Scholar 

  12. Salmi LR, Thomas H, Fabry JJ, Girard R (1989) The effect of the 1979 French seat-belt law on the nature and severity of injuries to front-seat occupants. Accid Anal Prev 21: 589–94

    Article  PubMed  CAS  Google Scholar 

  13. Dimitrijevic MR (1988) Residual motor functions in spinal cord injury. Adv Neurol 47: 138–55

    PubMed  CAS  Google Scholar 

  14. Sherwood AM, Dimitrijevic MR, McKay WB (1992) Evidence of subclinical brain influence in clinically complete spinal cord injury: discomplete SCI. J Neurol Sci 110: 90–98

    Article  PubMed  CAS  Google Scholar 

  15. Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75: 15–26

    Article  PubMed  CAS  Google Scholar 

  16. Balentine JD (1978) Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 39: 236–53

    PubMed  CAS  Google Scholar 

  17. Hurlbert RJ (2006) Strategies of medical intervention in the management of acute spinal cord injury. Spine (Phila Pa 1976) 31: S 16–21; discussion S36

    Article  Google Scholar 

  18. Anthes DL, Theriault E, Tator CH (1995) Characterization of axonal ultrastructural pathology following experimental spinal cord compression injury. Brain Res 702: 1–16

    Article  PubMed  CAS  Google Scholar 

  19. Baptiste DC, Fehlings MG (2006) Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 23: 318–34

    Article  PubMed  Google Scholar 

  20. Hagg T, Oudega M (2006) Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 23: 264–80

    PubMed  Google Scholar 

  21. Kakulas A (1988) The applied neurobiology of human spinal cord injury: a review. Paraplegia 26: 371–79

    Article  PubMed  CAS  Google Scholar 

  22. Bunge RP, Puckett WR, Hiester ED (1997) Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv Neurol 72: 305–15

    PubMed  CAS  Google Scholar 

  23. Collignon F, Martin D, Lenelle J, Stevenaert A (2002) Acute traumatic central cord syndrome: magnetic resonance imaging and clinical observations. J Neurosurg 96: 29–33

    PubMed  Google Scholar 

  24. Martin D, Schoenen J, Lenelle J, Reznik M, Moonen G (1992) MRI-pathological correlations in acute traumatic central cord syndrome: case report. Neuroradiology 34: 262–66

    Article  PubMed  CAS  Google Scholar 

  25. Dobkin BH, Havton LA (2004) Basic advances and new avenues in therapy of spinal cord injury. Annu Rev Med 55: 255–82

    Article  PubMed  CAS  Google Scholar 

  26. Buss A, Brook GA, Kakulas B et al. (2004) Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain 127: 34–44

    Article  PubMed  CAS  Google Scholar 

  27. Scholtes F, Adriaensens P, Storme L et al. (2006) Correlation of postmortem9.4 teslamagnetic resonance imaging and immunohistopathology of the human thoracic spinal cord 7 months after traumatic cervical spine injury. Neurosurgery 59: 671–78; discussion 671-78

    Article  PubMed  Google Scholar 

  28. Cajal SRY (1928) Degeneration and regeneration of the nervous system. New York: Hafner

    Google Scholar 

  29. Tello F (1911) La influencia del neurotropismo en la regeneration de los centros nerviosos. Trab Lab Invest Univ Madrid 9: 123–59

    Google Scholar 

  30. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214: 931–33

    Article  PubMed  CAS  Google Scholar 

  31. Munz M, Rasminsky M, Aguayo AJ, Vidal-Sanz M, Devor MG (1985) Functional activity of rat brainstem neurons regenerating axons along peripheral nerve grafts. Brain Res 340: 115–25

    Article  PubMed  CAS  Google Scholar 

  32. Bregman BS, Reier PJ (1986) Neural tissue transplants rescue axotomized rubrospinal cells from retrograde death. J Comp Neurol 244: 86–95

    Article  PubMed  CAS  Google Scholar 

  33. Reier PJ, Bregman BS, Wujek JR (1986) Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats. J Comp Neurol 247: 275–96

    Article  PubMed  CAS  Google Scholar 

  34. Das GD (1983) Neural transplantation in the spinal cord of adult rats. Conditions, survival, cytology and connectivity of the transplants. J Neurol Sci 62: 191–210

    Article  PubMed  CAS  Google Scholar 

  35. Brook GA, Plate D, Franzen R et al. (1998) Spontaneous longitudinally orientated axonal regeneration is associated with the Schwann cell framework within the lesion site following spinal cord compression injury of the rat. J NeurosciRes 53: 51–65

    CAS  Google Scholar 

  36. Fawcett JW (2006) Overcoming inhibition in the damaged spinal cord. J Neurotrauma 23: 371–83

    Article  PubMed  Google Scholar 

  37. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49: 377–91

    Article  PubMed  CAS  Google Scholar 

  38. Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343: 269–72

    Article  PubMed  CAS  Google Scholar 

  39. Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 76: 319–70

    PubMed  CAS  Google Scholar 

  40. Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54: 1–18

    Article  PubMed  CAS  Google Scholar 

  41. Fournier AE, Strittmatter SM (2001) Repulsive factors and axon regeneration in the CNS. Curr Opin Neurobiol 11: 89–94

    Article  PubMed  CAS  Google Scholar 

  42. Fawcett JW (2006) Overcoming inhibition in the damaged spinal cord. J Neurotrauma 23: 371–83

    Article  PubMed  Google Scholar 

  43. Bethea JR (2000) Spinal cord injury-induced inflammation: a dual-edged sword. Prog Brain Res 128: 33–42

    Article  PubMed  CAS  Google Scholar 

  44. Chan CC (2008) Inflammation: beneficial or detrimental after spinal cord injury? Recent Pat CNS Drug Discov 3: 189–99

    Article  PubMed  CAS  Google Scholar 

  45. Schwartz M (2010) “Tissue-repairing” blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells? Brain Behav Immun 24: 1054–57

    Article  PubMed  CAS  Google Scholar 

  46. Schwartz M, Lazarov-Spiegler O, Rapalino O, Agranov I, Velan G, Hadani M (1999) Potential repair of rat spinal cord injuries using stimulated homologous macrophages. Neurosurgery 44: 1041–45; discussion 1045-46

    Article  PubMed  CAS  Google Scholar 

  47. Gensel JC, Donnelly DJ, Popovich PG (2011) Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages. Expert Opin Ther Targets 15(4): 505–18

    PubMed  Google Scholar 

  48. Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34: 241–61

    Article  PubMed  CAS  Google Scholar 

  49. Dietz V (2003) Spinal cord pattern generators for locomotion. Clin Neurophysiol 114: 1379–89

    Article  PubMed  CAS  Google Scholar 

  50. Dietz V, Wirz M, Colombo G, Curt A (1998) Locomotor capacity and recovery of spinal cord function in paraplegic patients: a clinical and electrophysiological evaluation. Electroencephalogr Clin Neurophysiol 109: 140–53

    Article  PubMed  CAS  Google Scholar 

  51. Basso DM, Beattie MS, Bresnahan JC (2002) Descending systems contributing to locomotor recovery after mild or moderate spinal cord injury in rats: experimental evidence and a review of literature. Restor Neurol Neurosci 20: 189–218

    PubMed  Google Scholar 

  52. Basso DM (2000) Neuroanatomical substrates of functional recovery after experimental spinal cord injury: implications of basic science research for human spinal cord injury. Phys Ther 80: 808–17

    PubMed  CAS  Google Scholar 

  53. Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139: 244–56

    Article  PubMed  CAS  Google Scholar 

  54. Blight AR (1983) Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line-sampling. Neuroscience 10: 521–43

    Article  PubMed  CAS  Google Scholar 

  55. Tsai EC, Tator CH (2005) Neuroprotection and regeneration strategies for spinal cord repair. Curr Pharm Des 11: 1211–22

    Article  PubMed  CAS  Google Scholar 

  56. Kwon BK, Okon E, Hillyer J et al. (2010) A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma 28: 1545–88

    Article  PubMed  Google Scholar 

  57. Thallmair M, Metz GA, Z’Graggen WJ, Raineteau O, Kartje GL, Schwab ME (1998) Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nat Neurosci 1: 124–31

    Article  PubMed  CAS  Google Scholar 

  58. Maier IC, Schwab ME (2006) Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans R Soc Lond B Biol Sci 361: 1611–34

    Article  PubMed  CAS  Google Scholar 

  59. Bradbury EJ, Moon LD, Popat RJ et al. (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416: 636–40

    Article  PubMed  CAS  Google Scholar 

  60. Franz S, Weidner N, Blesch A (2011) Gene therapy approaches to enhancing plasticity and regeneration after spinal cord injury. Exp Neurol [Epub ahead of print]

    Google Scholar 

  61. Ruff CA, Wilcox JT, Fehlings MG (2011) Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol [Epub ahead of print]

    Google Scholar 

  62. Führmann T, Gerardo-Nava J, Brook GA (2011) Central nervous system. In: Pallua N, Suschek CV (eds) Tissue engineering: from lab to clinic. Springer, Heidelberg Dordrecht London New York, chap. 12, pp. 221–44

    Google Scholar 

  63. Fehlings MG, Tator CH (1995) The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol 132: 220–28

    Article  PubMed  CAS  Google Scholar 

  64. Li Y, Field PM, Raisman G (1998) Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J Neurosci 18: 10514–24

    PubMed  CAS  Google Scholar 

  65. Woolf CJ (2003) No Nogo: now where to go? Neuron 38: 153–56

    Article  PubMed  CAS  Google Scholar 

  66. Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4: 573–86

    Article  PubMed  CAS  Google Scholar 

  67. Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Ann NY Acad Sci 860: 360–76

    Article  PubMed  CAS  Google Scholar 

  68. Zehr EP, Duysens J (2004) Regulation of arm and leg movement during human locomotion. Neuroscientist 10: 347–61

    Article  PubMed  Google Scholar 

  69. Forssberg H (1986) A developmental model of human locomotion. Neurobiology of vertebrate locomotion. In: Grillner S, Stein PSG, Stuart H, Forssberg H, Herman RM (eds). Macmillan, London, pp. 485–501

    Google Scholar 

  70. Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86: 89–154

    Article  PubMed  Google Scholar 

  71. Wolpaw JR (2007) Spinal cord plasticity in acquisition and maintenance of motor skills. Acta Physiol (Oxf) 189: 155–69

    Article  CAS  Google Scholar 

  72. Evatt ML, Wolf SL, Segal RL (1989) Modification of human spinal stretch reflexes: preliminary studies. Neurosci Lett 105: 350–55

    Article  PubMed  CAS  Google Scholar 

  73. Muir GD, Steeves JD (1997) Sensorimotor stimulation to improve locomotor recovery after spinal cord injury. Trends Neurosci 20: 72–77

    Article  PubMed  CAS  Google Scholar 

  74. Wolpaw JR, Tennissen AM (2001) Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci 24: 807–43

    Article  PubMed  CAS  Google Scholar 

  75. Edgerton VR, Tillakaratne NJ, Bigbee AJ, de L, R.D., Roy RR (2004) Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci 27: 145–67

    Article  PubMed  CAS  Google Scholar 

  76. Neeper SA, Gomez-Pinilla F, Choi J, Cotman C (1995) Exercise and brain neurotrophins. Nature 373: 109

    Article  PubMed  CAS  Google Scholar 

  77. Schinder AF, Poo M (2000) The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 23: 639–45

    Article  PubMed  CAS  Google Scholar 

  78. Multon S, Franzen R, Poirrier AL, Scholtes F, Schoenen J (2003) The effect of treadmill training on motor recovery after a partial spinal cord compression-injury in the adult rat. J Neurotrauma 20: 699–706

    Article  PubMed  Google Scholar 

  79. Parker D (2005) Pharmacological approaches to functional recovery after spinal injury. Curr Drug Targets CNS Neurol Disord 4: 195–210

    Article  PubMed  CAS  Google Scholar 

  80. Bagnall AM, Jones L, Duffy S, Riemsma RP (2008) Spinal fixation surgery for acute traumatic spinal cord injury. Cochrane Database Syst Rev (1): CD004725

    PubMed  Google Scholar 

  81. Abrams GM, Wakasa M.: Chronic complications of spinal cord injury. www.uptodate.com/contents/chronic-complications-of-spinal-cord-injury

    Google Scholar 

  82. Tator CH (2006) Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery 59: 957–82; discussion 982-87

    PubMed  Google Scholar 

  83. Hawryluk GW, Rowland J, Kwon BK, Fehlings MG (2008) Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 25: E14

    Article  PubMed  Google Scholar 

  84. Dobkin BH (2010) Recommendations for publishing case studies of cell transplantation for spinal cord injury. Neurorehabil Neural Repair 24: 687–91

    Article  PubMed  Google Scholar 

  85. Bracken MB (2002) Methylprednisolone and spinal cord injury. J Neurosurg 96: 140–41

    Article  PubMed  Google Scholar 

  86. Bracken MB, Shepard MJ, Collins WF et al. (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322: 1405–11

    Article  PubMed  CAS  Google Scholar 

  87. Nesathurai S (1998) Steroids and spinal cord injury: revisiting the NASCIS 2 and NASCIS 3 trials. J Trauma 45: 1088–93

    Article  PubMed  CAS  Google Scholar 

  88. Hurlbert RJ (2000) Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg 93: 1–7

    Article  PubMed  CAS  Google Scholar 

  89. Bracken MB (2002) Steroids for acute spinal cord injury. Cochrane Database Syst Rev (3): CD001046

    PubMed  Google Scholar 

  90. Hugenholtz H, Cass DE, Dvorak MF et al. (2002) High-dose methylprednisolone for acute closed spinal cord injury-only a treatment option. Can J Neurol Sci 29: 227–35

    PubMed  CAS  Google Scholar 

  91. Fehlings MG (2001) Editorial: recommendations regarding the use of methylprednisolone in acute spinal cord injury: making sense out of the controversy. Spine 26: S 56–57

    Article  Google Scholar 

  92. Hall ED, Springer JE (2004) Neuroprotection and acute spinal cord injury: a reappraisal. Neuro Rx 1: 80–100

    Article  PubMed  Google Scholar 

  93. Pitts LH, Ross A, Chase GA, Faden AI (1995) Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries. J Neurotrauma 12: 235–43

    Article  PubMed  CAS  Google Scholar 

  94. Levi AD, Casella G, Green BA et al. (2010) Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury. Neurosurgery 66: 670–77

    Article  PubMed  Google Scholar 

  95. Fehlings MG, Rabin D, Sears W, Cadotte DW, Aarabi B (2010) Current practice in the timing of surgical intervention in spinal cord injury. Spine (Phila Pa 1976) 35: S 166–73

    Article  Google Scholar 

  96. Fehlings MG, Tator CH (1999) An evidence-based review of decompressive surgery in acute spinal cord injury: rationale, indications, and timing based on experimental and clinical studies. J Neurosurg 91: 1–11

    Article  PubMed  CAS  Google Scholar 

  97. Tator CH, Fehlings MG, Thorpe K, Taylor W (1999) Current use and timing of spinal surgery for management of acute spinal surgery for management of acute spinal cord injury in North America: results of a retrospective multicenter study. J Neurosurg 91: 12–18

    PubMed  CAS  Google Scholar 

  98. Waters RL, Meyer PRJ, Adkins RH, Felton D (1999) Emergency, acute, and surgical management of spine trauma. Arch Phys Med Rehabil 80: 1383–90

    Article  PubMed  CAS  Google Scholar 

  99. Pointillart V, Petitjean ME, Wiart L et al. (2000) Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord 38: 71–76

    Article  PubMed  CAS  Google Scholar 

  100. Cengiz SL, Kalkan E, Bayir A, Ilik K, Basefer A (2008) Timing of thoracolomber spine stabilization in trauma patients; impact on neurological outcome and clinical course. A real prospective (rct) randomized controlled study. Arch Orthop Trauma Surg 128: 959–66

    Article  PubMed  Google Scholar 

  101. Papadopoulos SM, Selden NR, Quint DJ, Patel N, Gillespie B, Grube S (2002) Immediate spinal cord decovmpression for cervical spinal cord injury: feasibility and outcome. J Trauma 52: 323–32

    Article  PubMed  Google Scholar 

  102. Vale FL, Burns J, Jackson AB, Hadley MN (1997) Combined medical and surgical treatment after acute spinal cord injury: results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J Neurosurg 87: 239–46

    Article  PubMed  CAS  Google Scholar 

  103. Vaccaro AR, Daugherty RJ, Sheehan TP et al. (1997) Neurologic outcome of early versus late surgery for cervical spinal cord injury. Spine (Phila Pa 1976) 22: 2609–13

    Article  CAS  Google Scholar 

  104. Kwon BK, Curt A, Belanger LM et al. (2009) Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial. J Neurosurg Spine 10: 181–93

    Article  PubMed  Google Scholar 

  105. Zorner B, Schwab ME (2010) Anti-Nogo on the go: from animal models to a clinical trial. Ann N Y Acad Sci 1198 (Suppl 1): E22–34

    Article  PubMed  Google Scholar 

  106. Knoller N, Auerbach G, Fulga V et al. (2005) Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine 3: 173–81

    Article  PubMed  Google Scholar 

  107. Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29: 191–203; discussion 204-06

    PubMed  Google Scholar 

  108. Cyranoski D (2007) Chinese network to start trials of spinal surgery. Nature 446: 476–77

    Article  PubMed  CAS  Google Scholar 

  109. Cyranoski D (2006) Patients warned about unproven spinal surgery. Nature 440: 850–51

    Article  PubMed  CAS  Google Scholar 

  110. Davies SJ, Shih CH, Noble M, Mayer-Proschel M, Davies JE, Proschel C (2011) Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury. PLoS One 6: e17328

    Article  PubMed  CAS  Google Scholar 

  111. Nakagawa M, Koyanagi M, Tanabe K et al. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26: 101–106

    Article  PubMed  CAS  Google Scholar 

  112. Wernig A, Muller S (1992) Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 30: 229–38

    Article  PubMed  CAS  Google Scholar 

  113. Barbeau H, Nadeau S, Garneau C (2006) Physical determinants, emerging concepts, and training approvaches in gait of individuals with spinal cord injury. J Neurotrauma 23: 571–85

    Article  PubMed  Google Scholar 

  114. McDonald JW, Becker D, Sadowsky CL, Jane JA sr, Conturo TE, Schultz LM (2002) Late recovery following spinal cord injury. Case report and review of the literature. J Neurosurg 97: 252–65

    PubMed  Google Scholar 

  115. Van de Crommert HW, Mulder T, Duysens J (1998) Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. GaitPosture 7: 251–63

    Google Scholar 

  116. Wessels M, Lucas C, Eriks I, de Groot S (2010) Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: a systematic review. J Rehabil Med 42: 513–19

    Article  PubMed  Google Scholar 

  117. Swinnen E, Duerinck S, Baeyens JP, Meeusen R, Kerckhofs E (2010) Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med 42: 520–26

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Scholtes, F., Brook, G., Martin, D. (2012). Spinal cord injury and its treatment: current management and experimental perspectives. In: Pickard, J.D., et al. Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 38. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0676-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0676-1_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0675-4

  • Online ISBN: 978-3-7091-0676-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics