Skip to main content

Animal Models of Atherosclerosis

  • Chapter
  • First Online:
Inflammation and Atherosclerosis

Abstract

In humans, the causal mechanisms behind the development of atherosclerosis are still not fully understood. On the one hand, the disease process is multifactorial in its initiation and complex because of its chronic nature; on the other, it has not been possible to sequentially characterize lesions in an individual patient, despite rapid progress in non-invasive detection modalities. Furthermore, for ethical reasons, experimental studies of atherosclerosis in patients with cardiovascular disease cannot be conducted. Thus, there arose the necessity to develop appropriate animal models in which both ex vivo and in vivo experimentations can be performed, and which would help delineate the pathogenetic steps and causal relations in this disease. During the last century, numerous different animal species, from mice to monkeys, have been used to study the pathogenesis of atherosclerotic lesions and their potential treatment. In this chapter, we will recapitulate and summarize the most important rabbit, rat, and mice models used in experimental studies of atherogenesis (see Fig. 8.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ignatowski AC (1908) Influence of animal food on the organism of rabbits. S Peterb Izviest Imp Voyenno Med Akad 16:154–173

    Google Scholar 

  2. Steinbiss W (1913) Ueber experimentelle alimentare atherosklerose. Virchow’s Arch F Pathol Anat 212:152–187

    Article  Google Scholar 

  3. Finking G, Hanke H (1997) Nikolaj Nikolajewitsch Anitschkow (1885–1964) established the cholesterol-fed rabbit as a model for atherosclerosis research. Atherosclerosis 135(1):1–7

    Article  PubMed  CAS  Google Scholar 

  4. Drobnik J, Dabrowski R, Szczepanowska A, Giernat L, Lorenc J (2000) Response of aorta connective tissue matrix to injury caused by vassopressin-induced hypertension or hypercholesterolemia. J Physiol Pharmacol 51(3):521–533

    PubMed  CAS  Google Scholar 

  5. Bocan TM, Mueller SB, Mazur MJ, Uhlendorf PD, Brown EQ, Kieft KA (1993) The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation. Atherosclerosis 102(1):9–22

    Article  PubMed  CAS  Google Scholar 

  6. Kolodgie FD, Katocs AS Jr, Largis EE, Wrenn SM, Cornhill JF, Herderick EE et al (1996) Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol. Methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type. Arterioscler Thromb Vasc Biol 16(12):1454–1464

    Article  PubMed  CAS  Google Scholar 

  7. Ramjiganesh T, Roy S, Freake HC, McIntyre JC, Fernandez ML (2002) Corn fiber oil lowers plasma cholesterol by altering hepatic cholesterol metabolism and up-regulating LDL receptors in guinea pigs. J Nutr 132(3):335–340

    PubMed  CAS  Google Scholar 

  8. Yanni AE, Yatzidis HA, Kavantzas NG, Agapitos EV, Perrea DN, Karayannacos PE (2003) Dietary L-aspartate and L-glutamate inhibit fatty streak initiation in cholesterol-fed rabbit. Nutr Metab Cardiovasc Dis 13(2):80–86

    Article  PubMed  CAS  Google Scholar 

  9. Kritchevsky D, Tepper SA, Williams DE, Story JA (1977) Experimental atherosclerosis in rabbits fed cholesterol-free diets. Part 7. Interaction of animal or vegetable protein with fiber. Atherosclerosis 26(4):397–403

    Article  PubMed  CAS  Google Scholar 

  10. Terpstra AH, West CE, Fennis JT, Schouten JA, van der Veen EA (1984) Hypocholesterolemic effect of dietary soy protein versus casein in rhesus monkeys (Macaca mulatta). Am J Clin Nutr 39(1):1–7

    PubMed  CAS  Google Scholar 

  11. West CE, Deuring K, Schutte JB, Terpstra AH (1982) The effect of age on the development of hypercholesterolemia in rabbits fed semipurified diets containing casein. J Nutr 112(7):1287–1295

    PubMed  CAS  Google Scholar 

  12. Kamimura R, Suzuki S, Sakamoto H, Miura N, Misumi K, Miyahara K (1999) Development of atherosclerotic lesions in cholesterol-loaded rabbits. Exp Anim 48(1):1–7

    Article  PubMed  CAS  Google Scholar 

  13. Constantinides P (1989) The role of arterial wall injury in atherogenesis and arterial thrombogenesis. Zentralbl Allg Pathol 135(6):517–530

    PubMed  CAS  Google Scholar 

  14. Abela GS, Picon PD, Friedl SE, Gebara OC, Miyamoto A, Federman M et al (1995) Triggering of plaque disruption and arterial thrombosis in an atherosclerotic rabbit model. Circulation 91(3):776–784

    PubMed  CAS  Google Scholar 

  15. Aikawa M, Rabkin E, Voglic SJ, Shing H, Nagai R, Schoen FJ et al (1998) Lipid lowering promotes accumulation of mature smooth muscle cells expressing smooth muscle myosin heavy chain isoforms in rabbit atheroma. Circ Res 83(10):1015–1026

    PubMed  CAS  Google Scholar 

  16. Skinner MP, Yuan C, Mitsumori L, Hayes CE, Raines EW, Nelson JA et al (1995) Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo. Nat Med 1(1):69–73

    Article  PubMed  Google Scholar 

  17. Worthley SG, Helft G, Fuster V, Zaman AG, Fayad ZA, Fallon JT et al (2000) Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis. Circulation 101(6):586–589

    PubMed  CAS  Google Scholar 

  18. Aikawa M, Rabkin E, Okada Y, Voglic SJ, Clinton SK, Brinckerhoff CE et al (1998) Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation 97(24):2433–2444

    PubMed  CAS  Google Scholar 

  19. Boger RH, Bode-Boger SM, Kienke S, Stan AC, Nafe R, Frolich JC (1998) Dietary L-arginine decreases myointimal cell proliferation and vascular monocyte accumulation in cholesterol-fed rabbits. Atherosclerosis 136(1):67–77

    Article  PubMed  CAS  Google Scholar 

  20. Adams CW, Miller NE, Morgan RS, Rao SN (1982) Lipoprotein levels and tissue lipids in fatty-fibrous atherosclerosis induced in rabbits by two years’ cholesterol feeding at a low level. Atherosclerosis 44(1):1–8

    Article  PubMed  CAS  Google Scholar 

  21. Cybulsky MI, Gimbrone MA Jr (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251(4995):788–791

    Article  PubMed  CAS  Google Scholar 

  22. Hiltunen TP, Luoma JS, Nikkari T, Yla-Herttuala S (1998) Expression of LDL receptor, VLDL receptor, LDL receptor-related protein, and scavenger receptor in rabbit atherosclerotic lesions: marked induction of scavenger receptor and VLDL receptor expression during lesion development. Circulation 97(11):1079–1086

    PubMed  CAS  Google Scholar 

  23. Nakazato K, Ishibashi T, Shindo J, Shiomi M, Maruyama Y (1996) Expression of very low density lipoprotein receptor mRNA in rabbit atherosclerotic lesions. Am J Pathol 149(6):1831–1838

    PubMed  CAS  Google Scholar 

  24. Rosenfeld ME, Tsukada T, Gown AM, Ross R (1987) Fatty streak initiation in Watanabe Heritable Hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 7(1):9–23

    Article  PubMed  CAS  Google Scholar 

  25. Hansson GK, Seifert PS, Olsson G, Bondjers G (1991) Immunohistochemical detection of macrophages and T lymphocytes in atherosclerotic lesions of cholesterol-fed rabbits. Arterioscler Thromb 11(3):745–750

    Article  PubMed  CAS  Google Scholar 

  26. Orlandi A, Francesconi A, Marcellini M, Ferlosio A, Spagnoli LG (2004) Role of ageing and coronary atherosclerosis in the development of cardiac fibrosis in the rabbit. Cardiovasc Res 64(3):544–552

    Article  PubMed  CAS  Google Scholar 

  27. Spagnoli LG, Orlandi A, Mauriello A, Santeusanio G, de Angelis C, Lucreziotti R et al (1991) Aging and atherosclerosis in the rabbit. 1. Distribution, prevalence and morphology of atherosclerotic lesions. Atherosclerosis 89(1):11–24

    Article  PubMed  CAS  Google Scholar 

  28. Daley SJ, Herderick EE, Cornhill JF, Rogers KA (1994) Cholesterol-fed and casein-fed rabbit models of atherosclerosis. Part 1: Differing lesion area and volume despite equal plasma cholesterol levels. Arterioscler Thromb 14(1):95–104

    Article  PubMed  CAS  Google Scholar 

  29. Daley SJ, Klemp KF, Guyton JR, Rogers KA (1994) Cholesterol-fed and casein-fed rabbit models of atherosclerosis. Part 2: Differing morphological severity of atherogenesis despite matched plasma cholesterol levels. Arterioscler Thromb 14(1):105–141

    Article  PubMed  CAS  Google Scholar 

  30. Thiery J, Nebendahl K, Rapp K, Kluge R, Teupser D, Seidel D (1995) Low atherosclerotic response of a strain of rabbits to diet-induced hypercholesterolemia. Arterioscler Thromb Vasc Biol 15(8):1181–1188

    Article  PubMed  CAS  Google Scholar 

  31. Constantinides P, Chakravarti RN (1961) Rabbit arterial thrombosis production by systemic procedures. Arch Pathol 72:197–208

    PubMed  CAS  Google Scholar 

  32. Johnstone MT, Botnar RM, Perez AS, Stewart R, Quist WC, Hamilton JA et al (2001) In vivo magnetic resonance imaging of experimental thrombosis in a rabbit model. Arterioscler Thromb Vasc Biol 21(9):1556–1560

    Article  PubMed  CAS  Google Scholar 

  33. Watanabe Y (1980) Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis 36(2):261–268

    Article  PubMed  CAS  Google Scholar 

  34. Austin MA, Hutter CM, Zimmern RL, Humphries SE (2004) Familial hypercholesterolemia and coronary heart disease: a HuGE association review. Am J Epidemiol 160(5):421–429

    Article  PubMed  Google Scholar 

  35. Buja LM, Kita T, Goldstein JL, Watanabe Y, Brown MS (1983) Cellular pathology of progressive atherosclerosis in the WHHL rabbit. An animal model of familial hypercholesterolemia. Arteriosclerosis 3(1):87–101

    Article  PubMed  CAS  Google Scholar 

  36. Watanabe Y, Ito T, Shiomi M (1985) The effect of selective breeding on the development of coronary atherosclerosis in WHHL rabbits. An animal model for familial hypercholesterolemia. Atherosclerosis 56(1):71–79

    Article  PubMed  CAS  Google Scholar 

  37. Shiomi M, Ito T, Tsukada T, Yata T, Ueda M (1994) Cell compositions of coronary and aortic atherosclerotic lesions in WHHL rabbits differ. An immunohistochemical study. Arterioscler Thromb 14(6):931–937

    Article  PubMed  CAS  Google Scholar 

  38. Shiomi M, Ito T, Hirouchi Y, Enomoto M (2001) Fibromuscular cap composition is important for the stability of established atherosclerotic plaques in mature WHHL rabbits treated with statins. Atherosclerosis 157(1):75–84

    Article  PubMed  CAS  Google Scholar 

  39. Shiomi M, Yamada S, Ito T (2005) Atheroma stabilizing effects of simvastatin due to depression of macrophages or lipid accumulation in the atheromatous plaques of coronary plaque-prone WHHL rabbits. Atherosclerosis 178(2):287–294

    Article  PubMed  CAS  Google Scholar 

  40. La Ville A, Turner PR, Pittilo RM, Martini S, Marenah CB, Rowles PM et al (1987) Hereditary hyperlipidemia in the rabbit due to overproduction of lipoproteins. I. Biochemical studies. Arteriosclerosis 7(2):105–112

    Article  PubMed  Google Scholar 

  41. Seddon AM, Woolf N, La Ville A, Pittilo RM, Rowles PM, Turner PR et al (1987) Hereditary hyperlipidemia and atherosclerosis in the rabbit due to overproduction of lipoproteins. II. Preliminary report of arterial pathology. Arteriosclerosis 7(2):113–124

    Article  PubMed  CAS  Google Scholar 

  42. de Roos B, Caslake MJ, Milliner K, Benson GM, Suckling KE, Packard CJ (2005) Characterisation of the lipoprotein structure in the St. Thomas’ Mixed Hyperlipidaemic (SMHL) rabbit. Atherosclerosis 181(1):63–68

    Article  PubMed  CAS  Google Scholar 

  43. Nordestgaard BG, Tybjaerg-Hansen A, Lewis B (1992) Influx in vivo of low density, intermediate density, and very low density lipoproteins into aortic intimas of genetically hyperlipidemic rabbits. Roles of plasma concentrations, extent of aortic lesion, and lipoprotein particle size as determinants. Arterioscler Thromb 12(1):6–18

    Article  PubMed  CAS  Google Scholar 

  44. Shen J, Herderick E, Cornhill JF, Zsigmond E, Kim HS, Kuhn H et al (1996) Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J Clin Invest 98(10):2201–2208

    Article  PubMed  CAS  Google Scholar 

  45. Brousseau ME, Kauffman RD, Herderick EE, Demosky SJ Jr, Evans W, Marcovina S et al (2000) LCAT modulates atherogenic plasma lipoproteins and the extent of atherosclerosis only in the presence of normal LDL receptors in transgenic rabbits. Arterioscler Thromb Vasc Biol 20(2):450–458

    Article  PubMed  CAS  Google Scholar 

  46. Fan J, Challah M, Shimoyamada H, Shiomi M, Marcovina S, Watanabe T (2000) Defects of the LDL receptor in WHHL transgenic rabbits lead to a marked accumulation of plasma lipoprotein[a]. J Lipid Res 41(6):1004–1012

    PubMed  CAS  Google Scholar 

  47. Koike T, Liang J, Wang X, Ichikawa T, Shiomi M, Liu G et al (2004) Overexpression of lipoprotein lipase in transgenic Watanabe heritable hyperlipidemic rabbits improves hyperlipidemia and obesity. J Biol Chem 279(9):7521–7529

    Article  PubMed  CAS  Google Scholar 

  48. Fan J, Wang J, Bensadoun A, Lauer SJ, Dang Q, Mahley RW et al (1994) Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins. Proc Natl Acad Sci USA 91(18):8724–8728

    Article  PubMed  CAS  Google Scholar 

  49. Taylor JM (1997) Transgenic rabbit models for the study of atherosclerosis. Ann N Y Acad Sci 811:146–152, discussion 152–154

    Article  PubMed  CAS  Google Scholar 

  50. Taylor JM, Fan J (1997) Transgenic rabbit models for the study of atherosclerosis. Front Biosci 2:d298–d308

    PubMed  CAS  Google Scholar 

  51. Hoeg JM, Vaisman BL, Demosky SJ Jr, Meyn SM, Talley GD, Hoyt RF Jr et al (1996) Lecithin:cholesterol acyltransferase overexpression generates hyperalpha-lipoproteinemia and a nonatherogenic lipoprotein pattern in transgenic rabbits. J Biol Chem 271(8):4396–4402

    Article  PubMed  CAS  Google Scholar 

  52. Brousseau ME, Santamarina-Fojo S, Vaisman BL, Applebaum-Bowden D, Berard AM, Talley GD et al (1997) Overexpression of human lecithin:cholesterol acyltransferase in cholesterol-fed rabbits: LDL metabolism and HDL metabolism are affected in a gene dose-dependent manner. J Lipid Res 38(12):2537–2547

    PubMed  CAS  Google Scholar 

  53. Hoeg JM, Santamarina-Fojo S, Berard AM, Cornhill JF, Herderick EE, Feldman SH et al (1996) Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc Natl Acad Sci USA 93(21):11448–11453

    Article  PubMed  CAS  Google Scholar 

  54. Brousseau ME, Wang J, Demosky SJ Jr, Vaisman BL, Talley GD, Santamarina-Fojo S et al (1998) Correction of hypoalphalipoproteinemia in LDL receptor-deficient rabbits by lecithin:cholesterol acyltransferase. J Lipid Res 39(8):1558–1567

    PubMed  CAS  Google Scholar 

  55. Perevozchikov AP, Vaisman BL, Sorokin AV, Kuryshev V, Vorob’ev EV, Dozortsev DI et al (1993) Study of the effect of the cDNA for the human apolipoprotein A-I gene in transgenic rabbits: modeling the neurological syndrome of human Tangier disease. Mol Biol 27(1):24–37

    CAS  Google Scholar 

  56. Duverger N, Viglietta C, Berthou L, Emmanuel F, Tailleux A, Parmentier-Nihoul L et al (1996) Transgenic rabbits expressing human apolipoprotein A-I in the liver. Arterioscler Thromb Vasc Biol 16(12):1424–1429

    Article  PubMed  CAS  Google Scholar 

  57. Duverger N, Kruth H, Emmanuel F, Caillaud JM, Viglietta C, Castro G et al (1996) Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits. Circulation 94(4):713–717

    PubMed  CAS  Google Scholar 

  58. Fan J, McCormick SP, Krauss RM, Taylor S, Quan R, Taylor JM et al (1995) Overexpression of human apolipoprotein B-100 in transgenic rabbits results in increased levels of LDL and decreased levels of HDL. Arterioscler Thromb Vasc Biol 15(11):1889–1899

    Article  PubMed  CAS  Google Scholar 

  59. Bates SR, Coughlin BA, Mazzone T, Borensztajn J, Getz GS (1987) Apoprotein E mediates the interaction of beta-VLDL with macrophages. J Lipid Res 28(7):787–797

    PubMed  CAS  Google Scholar 

  60. Gianturco SH, Bradley WA, Gotto AM Jr, Morrisett JD, Peavy DL (1982) Hypertriglyceridemic very low density lipoproteins induce triglyceride synthesis and accumulation in mouse peritoneal macrophages. J Clin Invest 70(1):168–178

    Article  PubMed  CAS  Google Scholar 

  61. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 92(2):883–893

    Article  PubMed  CAS  Google Scholar 

  62. Huang Y, Schwendner SW, Rall SC Jr, Sanan DA, Mahley RW (1997) Apolipoprotein E2 transgenic rabbits. Modulation of the type III hyperlipoproteinemic phenotype by estrogen and occurrence of spontaneous atherosclerosis. J Biol Chem 272(36):22685–22694

    Article  PubMed  CAS  Google Scholar 

  63. Fan J, Ji ZS, Huang Y, de Silva H, Sanan D, Mahley RW et al (1998) Increased expression of apolipoprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma. J Clin Invest 101(10):2151–2164

    Article  PubMed  CAS  Google Scholar 

  64. Mahley RW, Weisgraber KH, Hussain MM, Greenman B, Fisher M, Vogel T et al (1989) Intravenous infusion of apolipoprotein E accelerates clearance of plasma lipoproteins in rabbits. J Clin Invest 83(6):2125–2130

    Article  PubMed  CAS  Google Scholar 

  65. Yamada N, Shimano H, Mokuno H, Ishibashi S, Gotohda T, Kawakami M et al (1989) Increased clearance of plasma cholesterol after injection of apolipoprotein E into Watanabe heritable hyperlipidemic rabbits. Proc Natl Acad Sci USA 86(2):665–669

    Article  PubMed  CAS  Google Scholar 

  66. Yamada N, Inoue I, Kawamura M, Harada K, Watanabe Y, Shimano H et al (1992) Apolipoprotein E prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbits. J Clin Invest 89(2):706–711

    Article  PubMed  CAS  Google Scholar 

  67. Chapman MJ (1986) Comparative analysis of mammalian plasma lipoproteins. Method Enzymol 128:70–143

    Article  CAS  Google Scholar 

  68. Parke DV, Sacra PJ, Thornton PC (1978) Experimental atherosclerosis in the Wistar rat [proceedings]. Br J Pharmacol 63(2):346P–347P

    PubMed  CAS  Google Scholar 

  69. Hochleitner BW, Hochleitner EO, Obrist P, Eberl T, Amberger A, Xu Q et al (2000) Fluid shear stress induces heat shock protein 60 expression in endothelial cells in vitro and in vivo. Arterioscler Thromb Vasc Biol 20(3):617–623

    Article  PubMed  CAS  Google Scholar 

  70. Van Eden W, Wick G, Albani S, Cohen I (2007) Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann N Y Acad Sci 1113:217–237

    Article  PubMed  CAS  Google Scholar 

  71. Kovar J, Tonar Z, Heczkova M, Poledne R (2009) Prague hereditary hypercholesterolemic (PHHC) rat - a model of polygenic hypercholesterolemia. Physiol Res 58(Suppl 2):S95–S99

    PubMed  CAS  Google Scholar 

  72. Knowles JW, Reddick RL, Jennette JC, Shesely EG, Smithies O, Maeda N (2000) Enhanced atherosclerosis and kidney dysfunction in eNOS(−/−)Apoe(−/−) mice are ameliorated by enalapril treatment. J Clin Invest 105(4):451–458

    Article  PubMed  CAS  Google Scholar 

  73. Nickerson CJ, Haudenschild CC, Chobanian AV (1992) Effects of hypertension and hyperlipidemia on the myocardium and coronary vasculature of the WHHL rabbit. Exp Mol Pathol 56(3):173–185

    Article  PubMed  CAS  Google Scholar 

  74. Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    Article  PubMed  CAS  Google Scholar 

  75. Wu CH, Chi JC, Jerng JS, Lin SJ, Jan KM, Wang DL et al (1990) Transendothelial macromolecular transport in the aorta of spontaneously hypertensive rats. Hypertension 16(2):154–161

    PubMed  Google Scholar 

  76. Pravenec M, Zidek V, Simakova M, Kren V, Krenova D, Horky K et al (1999) Genetics of Cd36 and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J Clin Invest 103(12):1651–1657

    Article  PubMed  CAS  Google Scholar 

  77. Limas C, Westrum B, Limas CJ (1980) The evolution of vascular changes in the spontaneously hypertensive rat. Am J Pathol 98(2):357–384

    PubMed  CAS  Google Scholar 

  78. Aitman TJ, Gotoda T, Evans AL, Imrie H, Heath KE, Trembling PM et al (1997) Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet 16(2):197–201

    Article  PubMed  CAS  Google Scholar 

  79. Kapuscinski M, Charchar F, Innes B, Mitchell GA, Norman TL, Harrap SB (1996) Nerve growth factor gene and hypertension in spontaneously hypertensive rats. J Hypertens 14(2):191–197

    Article  PubMed  CAS  Google Scholar 

  80. Keren P, George J, Keren G, Harats D (2001) Non-obese diabetic (NOD) mice exhibit an increased cellular immune response to glycated-LDL but are resistant to high fat diet induced atherosclerosis. Atherosclerosis 157(2):285–292

    Article  PubMed  CAS  Google Scholar 

  81. Kreutz R, Struk B, Rubattu S, Hubner N, Szpirer J, Szpirer C et al (1997) Role of the alpha-, beta-, and gamma-subunits of epithelial sodium channel in a model of polygenic hypertension. Hypertension 29(1 Pt 1):131–136

    PubMed  CAS  Google Scholar 

  82. Kumai T, Oonuma S, Kitaoka Y, Tadokoro M, Kobayashi S (2003) Biochemical and morphological characterization of spontaneously hypertensive hyperlipidaemic rats. Clin Exp Pharmacol Physiol 30(8):537–544

    Article  PubMed  CAS  Google Scholar 

  83. Amagasa H, Okazaki M, Iwai S, Kumai T, Kobayashi S, Oguchi K (2005) Enhancement of the coagulation system in spontaneously hypertensive and hyperlipidemic rats. J Atheroscler Thromb 12(4):191–198

    Article  PubMed  CAS  Google Scholar 

  84. Gomibuchi H, Okazaki M, Iwai S, Kumai T, Kobayashi S, Oguchi K (2007) Development of hyperfibrinogenemia in spontaneously hypertensive and hyperlipidemic rats: a potentially useful animal model as a complication of hypertension and hyperlipidemia. Exp Anim 56(1):1–10

    Article  PubMed  CAS  Google Scholar 

  85. Herrera VL, Makrides SC, Xie HX, Adari H, Krauss RM, Ryan US et al (1999) Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein. Nat Med 5(12):1383–1389

    Article  PubMed  CAS  Google Scholar 

  86. Herrera VM, Didishvili T, Lopez LV, Zander K, Traverse S, Gantz D et al (2001) Hypertension exacerbates coronary artery disease in transgenic hyperlipidemic Dahl salt-sensitive hypertensive rats. Mol Med 7(12):831–844

    PubMed  CAS  Google Scholar 

  87. Herrera VL, Shen L, Lopez LV, Didishvili T, Zhang YX, Ruiz-Opazo N (2003) Chlamydia pneumoniae accelerates coronary artery disease progression in transgenic hyperlipidemia-genetic hypertension rat model. Mol Med 9(5–8):135–142

    PubMed  CAS  Google Scholar 

  88. Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P (1985) Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57(1):65–73

    Article  PubMed  CAS  Google Scholar 

  89. Nishina PM, Verstuyft J, Paigen B (1990) Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J Lipid Res 31(5):859–869

    PubMed  CAS  Google Scholar 

  90. Liao F, Andalibi A, deBeer FC, Fogelman AM, Lusis AJ (1993) Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor activation in response to an atherogenic diet in mice. J Clin Invest 91(6):2572–2579

    Article  PubMed  CAS  Google Scholar 

  91. Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N (1992) Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA 89(10):4471–4475

    Article  PubMed  CAS  Google Scholar 

  92. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG et al (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71(2):343–353

    Article  PubMed  CAS  Google Scholar 

  93. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14(1):133–140

    Article  PubMed  CAS  Google Scholar 

  94. Nakashima Y, Raines EW, Plump AS, Breslow JL, Ross R (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 18(5):842–851

    Article  PubMed  CAS  Google Scholar 

  95. Staprans I, Pan XM, Rapp JH, Grunfeld C, Feingold KR (2000) Oxidized cholesterol in the diet accelerates the development of atherosclerosis in LDL receptor- and apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 20(3):708–714

    Article  PubMed  CAS  Google Scholar 

  96. von der Thusen JH, van Berkel TJ, Biessen EA (2001) Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Circulation 103(8):1164–1170

    PubMed  Google Scholar 

  97. Reddick RL, Zhang SH, Maeda N (1994) Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb 14(1):141–147

    Article  PubMed  CAS  Google Scholar 

  98. Calara F, Silvestre M, Casanada F, Yuan N, Napoli C, Palinski W (2001) Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice. J Pathol 195(2):257–263

    Article  PubMed  CAS  Google Scholar 

  99. Johnson JL, Jackson CL (2001) Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis 154(2):399–406

    Article  PubMed  CAS  Google Scholar 

  100. Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM (2000) Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol 20(12):2587–2592

    Article  PubMed  CAS  Google Scholar 

  101. Seo HS, Lombardi DM, Polinsky P, Powell-Braxton L, Bunting S, Schwartz SM et al (1997) Peripheral vascular stenosis in apolipoprotein E-deficient mice. Potential roles of lipid deposition, medial atrophy, and adventitial inflammation. Arterioscler Thromb Vasc Biol 17(12):3593–3601

    Article  PubMed  CAS  Google Scholar 

  102. Williams H, Johnson JL, Carson KG, Jackson CL (2002) Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 22(5):788–792

    Article  PubMed  CAS  Google Scholar 

  103. Johnson J, Carson K, Williams H, Karanam S, Newby A, Angelini G et al (2005) Plaque rupture after short periods of fat feeding in the apolipoprotein E-knockout mouse: model characterization and effects of pravastatin treatment. Circulation 111(11):1422–1430

    Article  PubMed  CAS  Google Scholar 

  104. de Knijff P, van den Maagdenberg AM, Stalenhoef AF, Leuven JA, Demacker PN, Kuyt LP et al (1991) Familial dysbetalipoproteinemia associated with apolipoprotein E3-Leiden in an extended multigeneration pedigree. J Clin Invest 88(2):643–655

    Article  PubMed  Google Scholar 

  105. Fazio S, Lee YL, Ji ZS, Rall SC Jr (1993) Type III hyperlipoproteinemic phenotype in transgenic mice expressing dysfunctional apolipoprotein E. J Clin Invest 92(3):1497–1503

    Article  PubMed  CAS  Google Scholar 

  106. van den Maagdenberg AM, Hofker MH, Krimpenfort PJ, de Bruijn I, van Vlijmen B, van der Boom H et al (1993) Transgenic mice carrying the apolipoprotein E3-Leiden gene exhibit hyperlipoproteinemia. J Biol Chem 268(14):10540–10545

    PubMed  Google Scholar 

  107. Merat S, Fruebis J, Sutphin M, Silvestre M, Reaven PD (2000) Effect of aging on aortic expression of the vascular cell adhesion molecule-1 and atherosclerosis in murine models of atherosclerosis. J Gerontol A Biol Sci Med Sci 55(2):B85–B94

    Article  PubMed  CAS  Google Scholar 

  108. Ishibashi S, Herz J, Maeda N, Goldstein JL, Brown MS (1994) The two-receptor model of lipoprotein clearance: tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc Natl Acad Sci USA 91(10):4431–4435

    Article  PubMed  CAS  Google Scholar 

  109. Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93(5):1885–1893

    Article  PubMed  CAS  Google Scholar 

  110. Witting PK, Pettersson K, Ostlund-Lindqvist AM, Westerlund C, Eriksson AW, Stocker R (1999) Inhibition by a coantioxidant of aortic lipoprotein lipid peroxidation and atherosclerosis in apolipoprotein E and low density lipoprotein receptor gene double knockout mice. FASEB J 13(6):667–675

    PubMed  CAS  Google Scholar 

  111. Paszty C, Maeda N, Verstuyft J, Rubin EM (1994) Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest 94(2):899–903

    Article  PubMed  CAS  Google Scholar 

  112. Plump AS, Scott CJ, Breslow JL (1994) Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA 91(20):9607–9611

    Article  PubMed  CAS  Google Scholar 

  113. Callow MJ, Stoltzfus LJ, Lawn RM, Rubin EM (1994) Expression of human apolipoprotein B and assembly of lipoprotein(a) in transgenic mice. Proc Natl Acad Sci USA 91(6):2130–2134

    Article  PubMed  CAS  Google Scholar 

  114. Linton MF, Farese RV Jr, Chiesa G, Grass DS, Chin P, Hammer RE et al (1993) Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a). J Clin Invest 92(6):3029–3037

    Article  PubMed  CAS  Google Scholar 

  115. Purcell-Huynh DA, Farese RV Jr, Johnson DF, Flynn LM, Pierotti V, Newland DL et al (1995) Transgenic mice expressing high levels of human apolipoprotein B develop severe atherosclerotic lesions in response to a high-fat diet. J Clin Invest 95(5):2246–2257

    Article  PubMed  CAS  Google Scholar 

  116. Voyiaziakis E, Goldberg IJ, Plump AS, Rubin EM, Breslow JL, Huang LS (1998) ApoA-I deficiency causes both hypertriglyceridemia and increased atherosclerosis in human apoB transgenic mice. J Lipid Res 39(2):313–321

    PubMed  CAS  Google Scholar 

  117. Veniant MM, Sullivan MA, Kim SK, Ambroziak P, Chu A, Wilson MD et al (2000) Defining the atherogenicity of large and small lipoproteins containing apolipoprotein B100. J Clin Invest 106(12):1501–1510

    Article  PubMed  CAS  Google Scholar 

  118. Veniant MM, Withycombe S, Young SG (2001) Lipoprotein size and atherosclerosis susceptibility in Apoe(−/−) and Ldlr(−/−) mice. Arterioscler Thromb Vasc Biol 21(10):1567–1570

    Article  PubMed  CAS  Google Scholar 

  119. Lieu HD, Withycombe SK, Walker Q, Rong JX, Walzem RL, Wong JS et al (2003) Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion. Circulation 107(9):1315–1321

    Article  PubMed  Google Scholar 

  120. Warden CH, Hedrick CC, Qiao JH, Castellani LW, Lusis AJ (1993) Atherosclerosis in transgenic mice overexpressing apolipoprotein A-II. Science 261(5120):469–472

    Article  PubMed  CAS  Google Scholar 

  121. Marotti KR, Castle CK, Boyle TP, Lin AH, Murray RW, Melchior GW (1993) Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature 364(6432):73–75

    Article  PubMed  CAS  Google Scholar 

  122. Vaisman BL, Klein HG, Rouis M, Berard AM, Kindt MR, Talley GD et al (1995) Overexpression of human lecithin cholesterol acyltransferase leads to hyperalphalipoproteinemia in transgenic mice. J Biol Chem 270(20):12269–12275

    Article  PubMed  CAS  Google Scholar 

  123. Lawn RM, Wade DP, Hammer RE, Chiesa G, Verstuyft JG, Rubin EM (1992) Atherogenesis in transgenic mice expressing human apolipoprotein(a). Nature 360(6405):670–672

    Article  PubMed  CAS  Google Scholar 

  124. Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM (1991) Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 353(6341):265–267

    Article  PubMed  CAS  Google Scholar 

  125. Cohen RD, Castellani LW, Qiao JH, Van Lenten BJ, Lusis AJ, Reue K (1997) Reduced aortic lesions and elevated high density lipoprotein levels in transgenic mice overexpressing mouse apolipoprotein A-IV. J Clin Invest 99(8):1906–1916

    Article  PubMed  CAS  Google Scholar 

  126. Duverger N, Tremp G, Caillaud JM, Emmanuel F, Castro G, Fruchart JC et al (1996) Protection against atherogenesis in mice mediated by human apolipoprotein A-IV. Science 273(5277):966–968

    Article  PubMed  CAS  Google Scholar 

  127. de Silva HV, Lauer SJ, Wang J, Simonet WS, Weisgraber KH, Mahley RW et al (1994) Overexpression of human apolipoprotein C-III in transgenic mice results in an accumulation of apolipoprotein B48 remnants that is corrected by excess apolipoprotein E. J Biol Chem 269(3):2324–2335

    PubMed  Google Scholar 

  128. Masucci-Magoulas L, Goldberg IJ, Bisgaier CL, Serajuddin H, Francone OL, Breslow JL et al (1997) A mouse model with features of familial combined hyperlipidemia. Science 275(5298):391–394

    Article  PubMed  CAS  Google Scholar 

  129. Li H, Reddick RL, Maeda N (1993) Lack of apoA-I is not associated with increased susceptibility to atherosclerosis in mice. Arterioscler Thromb 13(12):1814–1821

    Article  PubMed  CAS  Google Scholar 

  130. Sakai N, Vaisman BL, Koch CA, Hoyt RF Jr, Meyn SM, Talley GD et al (1997) Targeted disruption of the mouse lecithin:cholesterol acyltransferase (LCAT) gene. Generation of a new animal model for human LCAT deficiency. J Biol Chem 272(11):7506–7510

    Article  PubMed  CAS  Google Scholar 

  131. van Ree JH, Hofker MH, van den Broek WJ, van Deursen JM, van der Boom H, Frants RR et al (1995) Increased response to cholesterol feeding in apolipoprotein C1-deficient mice. Biochem J 305(Pt 3):905–911

    PubMed  Google Scholar 

  132. Mezdour H, Jones R, Dengremont C, Castro G, Maeda N (1997) Hepatic lipase deficiency increases plasma cholesterol but reduces susceptibility to atherosclerosis in apolipoprotein E-deficient mice. J Biol Chem 272(21):13570–13575

    Article  PubMed  CAS  Google Scholar 

  133. Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K et al (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386(6622):292–296

    Article  PubMed  CAS  Google Scholar 

  134. Hirano K, Young SG, Farese RV Jr, Ng J, Sande E, Warburton C et al (1996) Targeted disruption of the mouse apobec-1 gene abolishes apolipoprotein B mRNA editing and eliminates apolipoprotein B48. J Biol Chem 271(17):9887–9890

    Article  PubMed  CAS  Google Scholar 

  135. Nakamuta M, Chang BH, Zsigmond E, Kobayashi K, Lei H, Ishida BY et al (1996) Complete phenotypic characterization of apobec-1 knockout mice with a wild-type genetic background and a human apolipoprotein B transgenic background, and restoration of apolipoprotein B mRNA editing by somatic gene transfer of Apobec-1. J Biol Chem 271(42):25981–25988

    Article  PubMed  CAS  Google Scholar 

  136. Veniant MM, Pierotti V, Newland D, Cham CM, Sanan DA, Walzem RL et al (1997) Susceptibility to atherosclerosis in mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. J Clin Invest 100(1):180–188

    Article  PubMed  CAS  Google Scholar 

  137. Sullivan PM, Mezdour H, Aratani Y, Knouff C, Najib J, Reddick RL et al (1997) Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem 272(29):17972–17980

    Article  PubMed  CAS  Google Scholar 

  138. Zhou X, Paulsson G, Stemme S, Hansson GK (1998) Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest 101(8):1717–1725

    Article  PubMed  CAS  Google Scholar 

  139. Fredrikson GN, Andersson L, Soderberg I, Dimayuga P, Chyu KY, Shah PK et al (2005) Atheroprotective immunization with MDA-modified apo B-100 peptide sequences is associated with activation of Th2 specific antibody expression. Autoimmunity 38(2):171–179

    Article  PubMed  CAS  Google Scholar 

  140. Tellides G, Tereb DA, Kirkiles-Smith NC, Kim RW, Wilson JH, Schechner JS et al (2000) Interferon-gamma elicits arteriosclerosis in the absence of leukocytes. Nature 403(6766):207–211

    Article  PubMed  CAS  Google Scholar 

  141. Buono C, Binder CJ, Stavrakis G, Witztum JL, Glimcher LH, Lichtman AH (2005) T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci USA 102(5):1596–1601

    Article  PubMed  CAS  Google Scholar 

  142. Schulte S, Sukhova GK, Libby P (2008) Genetically programmed biases in Th1 and Th2 immune responses modulate atherogenesis. Am J Pathol 172(6):1500–1508

    Article  PubMed  CAS  Google Scholar 

  143. Roselaar SE, Kakkanathu PX, Daugherty A (1996) Lymphocyte populations in atherosclerotic lesions of apoE−/− and LDL receptor−/− mice. Decreasing density with disease progression. Arterioscler Thromb Vasc Biol 16(8):1013–1018

    Article  PubMed  CAS  Google Scholar 

  144. Dansky HM, Charlton SA, Harper MM, Smith JD (1997) T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA 94(9):4642–4646

    Article  PubMed  CAS  Google Scholar 

  145. Reardon CA, Blachowicz L, White T, Cabana V, Wang Y, Lukens J et al (2001) Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 21(6):1011–1016

    Article  PubMed  CAS  Google Scholar 

  146. Song L, Leung C, Schindler C (2001) Lymphocytes are important in early atherosclerosis. J Clin Invest 108(2):251–259

    PubMed  CAS  Google Scholar 

  147. Zhou J, Moller J, Danielsen CC, Bentzon J, Ravn HB, Austin RC et al (2001) Dietary supplementation with methionine and homocysteine promotes early atherosclerosis but not plaque rupture in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 21(9):1470–1476

    Article  PubMed  CAS  Google Scholar 

  148. Daugherty A, Pure E, Delfel-Butteiger D, Chen S, Leferovich J, Roselaar SE et al (1997) The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest 100(6):1575–1580

    Article  PubMed  CAS  Google Scholar 

  149. Taleb S, Tedgui A, Mallat Z (2008) Regulatory T-cell immunity and its relevance to atherosclerosis. J Intern Med 263(5):489–499

    Article  PubMed  CAS  Google Scholar 

  150. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J et al (2006) Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 12(2):178–180

    Article  PubMed  CAS  Google Scholar 

  151. Mor A, Planer D, Luboshits G, Afek A, Metzger S, Chajek-Shaul T et al (2007) Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 27(4):893–900

    Article  PubMed  CAS  Google Scholar 

  152. Emeson EE, Shen ML, Bell CG, Qureshi A (1996) Inhibition of atherosclerosis in CD4 T-cell-ablated and nude (nu/nu) C57BL/6 hyperlipidemic mice. Am J Pathol 149(2):675–685

    PubMed  CAS  Google Scholar 

  153. Huber SA, Sakkinen P, David C, Newell MK, Tracy RP (2001) T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation 103(21):2610–2616

    PubMed  CAS  Google Scholar 

  154. Elhage R, Gourdy P, Brouchet L, Jawien J, Fouque MJ, Fievet C et al (2004) Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Am J Pathol 165(6):2013–2018

    Article  PubMed  Google Scholar 

  155. Zhou X, Robertson AK, Rudling M, Parini P, Hansson GK (2005) Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ Res 96(4):427–434

    Article  PubMed  CAS  Google Scholar 

  156. Fyfe AI, Qiao JH, Lusis AJ (1994) Immune-deficient mice develop typical atherosclerotic fatty streaks when fed an atherogenic diet. J Clin Invest 94(6):2516–2520

    Article  PubMed  CAS  Google Scholar 

  157. Ludewig B, Freigang S, Jaggi M, Kurrer MO, Pei YC, Vlk L et al (2000) Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model. Proc Natl Acad Sci USA 97(23):12752–12757

    Article  PubMed  CAS  Google Scholar 

  158. Kircher MF, Grimm J, Swirski FK, Libby P, Gerszten RE, Allport JR et al (2008) Noninvasive in vivo imaging of monocyte trafficking to atherosclerotic lesions. Circulation 117(3):388–395

    Article  PubMed  Google Scholar 

  159. Lessner SM, Prado HL, Waller EK, Galis ZS (2002) Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. Am J Pathol 160(6):2145–2155

    Article  PubMed  CAS  Google Scholar 

  160. Swirski FK, Pittet MJ, Kircher MF, Aikawa E, Jaffer FA, Libby P et al (2006) Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc Natl Acad Sci USA 103(27):10340–10345

    Article  PubMed  CAS  Google Scholar 

  161. Stoneman V, Braganza D, Figg N, Mercer J, Lang R, Goddard M et al (2007) Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res 100(6):884–893

    Article  PubMed  CAS  Google Scholar 

  162. Zhou X, Hansson GK (1999) Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand J Immunol 50(1):25–30

    Article  PubMed  CAS  Google Scholar 

  163. Moos MP, John N, Grabner R, Nossmann S, Gunther B, Vollandt R et al (2005) The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 25(11):2386–2391

    Article  PubMed  CAS  Google Scholar 

  164. Caligiuri G, Nicoletti A, Poirier B, Hansson GK (2002) Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 109(6):745–753

    PubMed  CAS  Google Scholar 

  165. Jongstra-Bilen J, Haidari M, Zhu SN, Chen M, Guha D, Cybulsky MI (2006) Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 203(9):2073–2083

    Article  PubMed  CAS  Google Scholar 

  166. Liu P, Yu YR, Spencer JA, Johnson AE, Vallanat CT, Fong AM et al (2008) CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol 28(2):243–250

    Article  PubMed  CAS  Google Scholar 

  167. Millonig G, Niederegger H, Rabl W, Hochleitner BW, Hoefer D, Romani N et al (2001) Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler Thromb Vasc Biol 21(4):503–508

    Article  PubMed  CAS  Google Scholar 

  168. Shaposhnik Z, Wang X, Weinstein M, Bennett BJ, Lusis AJ (2007) Granulocyte macrophage colony-stimulating factor regulates dendritic cell content of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 27(3):621–627

    Article  PubMed  CAS  Google Scholar 

  169. Angeli V, Llodra J, Rong JX, Satoh K, Ishii S, Shimizu T et al (2004) Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 21(4):561–574

    Article  PubMed  CAS  Google Scholar 

  170. Shamshiev AT, Ampenberger F, Ernst B, Rohrer L, Marsland BJ, Kopf M (2007) Dyslipidemia inhibits Toll-like receptor-induced activation of CD8alpha-negative dendritic cells and protective Th1 type immunity. J Exp Med 204(2):441–452

    Article  PubMed  CAS  Google Scholar 

  171. Mallat Z, Besnard S, Duriez M, Deleuze V, Emmanuel F, Bureau MF et al (1999) Protective role of interleukin-10 in atherosclerosis. Circ Res 85(8):e17–e24

    PubMed  CAS  Google Scholar 

  172. Pinderski Oslund LJ, Hedrick CC, Olvera T, Hagenbaugh A, Territo M, Berliner JA et al (1999) Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol 19(12):2847–2853

    Article  PubMed  CAS  Google Scholar 

  173. Caligiuri G, Rudling M, Ollivier V, Jacob MP, Michel JB, Hansson GK et al (2003) Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol Med 9(1–2):10–17

    PubMed  CAS  Google Scholar 

  174. Potteaux S, Esposito B, van Oostrom O, Brun V, Ardouin P, Groux H et al (2004) Leukocyte-derived interleukin 10 is required for protection against atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 24(8):1474–1478

    Article  PubMed  CAS  Google Scholar 

  175. Hagenbaugh A, Sharma S, Dubinett SM, Wei SH, Aranda R, Cheroutre H et al (1997) Altered immune responses in interleukin 10 transgenic mice. J Exp Med 185(12):2101–2110

    Article  PubMed  CAS  Google Scholar 

  176. Dawson TC, Kuziel WA, Osahar TA, Maeda N (1999) Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 143(1):205–211

    Article  PubMed  CAS  Google Scholar 

  177. Aiello RJ, Bourassa PA, Lindsey S, Weng W, Natoli E, Rollins BJ et al (1999) Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 19(6):1518–1525

    Article  PubMed  CAS  Google Scholar 

  178. Buono C, Come CE, Stavrakis G, Maguire GF, Connelly PW, Lichtman AH (2003) Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb Vasc Biol 23(3):454–460

    Article  PubMed  CAS  Google Scholar 

  179. Gupta S, Pablo AM, Jiang X, Wang N, Tall AR, Schindler C (1997) IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 99(11):2752–2761

    Article  PubMed  CAS  Google Scholar 

  180. Whitman SC, Ravisankar P, Elam H, Daugherty A (2000) Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E−/− mice. Am J Pathol 157(6):1819–1824

    Article  PubMed  CAS  Google Scholar 

  181. Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M (1995) Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA 92(18):8264–8268

    Article  PubMed  CAS  Google Scholar 

  182. Feingold KR, Grunfeld C (1992) Role of cytokines in inducing hyperlipidemia. Diabetes 41(Suppl 2):97–101

    PubMed  CAS  Google Scholar 

  183. Xanthoulea S, Thelen M, Pottgens C, Gijbels MJ, Lutgens E, de Winther MP (2009) Absence of p55 TNF receptor reduces atherosclerosis, but has no major effect on angiotensin II induced aneurysms in LDL receptor deficient mice. PLoS One 4(7):e6113

    Article  PubMed  CAS  Google Scholar 

  184. Schreyer SA, Peschon JJ, LeBoeuf RC (1996) Accelerated atherosclerosis in mice lacking tumor necrosis factor receptor p55. J Biol Chem 271(42):26174–26178

    Article  PubMed  CAS  Google Scholar 

  185. Olofsson PS, Soderstrom LA, Wagsater D, Sheikine Y, Ocaya P, Lang F et al (2008) CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice. Circulation 117(10):1292–1301

    Article  PubMed  CAS  Google Scholar 

  186. Jeon HJ, Choi JH, Jung IH, Park JG, Lee MR, Lee MN et al (2010) CD137 (4-1BB) deficiency reduces atherosclerosis in hyperlipidemic mice. Circulation 121(9):1124–1133

    Article  PubMed  CAS  Google Scholar 

  187. Mallat Z, Gojova A, Marchiol-Fournigault C, Esposito B, Kamate C, Merval R et al (2001) Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 89(10):930–934

    Article  PubMed  CAS  Google Scholar 

  188. Grainger DJ, Mosedale DE, Metcalfe JC, Bottinger EP (2000) Dietary fat and reduced levels of TGFbeta1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions. J Cell Sci 113(Pt 13):2355–2361

    PubMed  CAS  Google Scholar 

  189. Lutgens E, Gijbels M, Smook M, Heeringa P, Gotwals P, Koteliansky VE et al (2002) Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol 22(6):975–982

    Article  PubMed  CAS  Google Scholar 

  190. Gojova A, Brun V, Esposito B, Cottrez F, Gourdy P, Ardouin P et al (2003) Specific abrogation of transforming growth factor-beta signaling in T cells alters atherosclerotic lesion size and composition in mice. Blood 102(12):4052–4058

    Article  PubMed  CAS  Google Scholar 

  191. Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK (2003) Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 112(9):1342–1350

    PubMed  CAS  Google Scholar 

  192. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR et al (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386(6620):78–81

    Article  PubMed  CAS  Google Scholar 

  193. Qiao JH, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang XP et al (1997) Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol 150(5):1687–1699

    PubMed  CAS  Google Scholar 

  194. Xiao Q, Danton MJ, Witte DP, Kowala MC, Valentine MT, Bugge TH et al (1997) Plasminogen deficiency accelerates vessel wall disease in mice predisposed to atherosclerosis. Proc Natl Acad Sci USA 94(19):10335–10340

    Article  PubMed  CAS  Google Scholar 

  195. Kremen M, Krishnan R, Emery I, Hu JH, Slezicki KI, Wu A et al (2008) Plasminogen mediates the atherogenic effects of macrophage-expressed urokinase and accelerates atherosclerosis in apoE-knockout mice. Proc Natl Acad Sci USA 105(44):17109–17114

    Article  PubMed  CAS  Google Scholar 

  196. Silence J, Lupu F, Collen D, Lijnen HR (2001) Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivation. Arterioscler Thromb Vasc Biol 21(9):1440–1445

    Article  PubMed  CAS  Google Scholar 

  197. Lemaitre V, O’Byrne TK, Borczuk AC, Okada Y, Tall AR, D’Armiento J (2001) ApoE knockout mice expressing human matrix metalloproteinase-1 in macrophages have less advanced atherosclerosis. J Clin Invest 107(10):1227–1234

    Article  PubMed  CAS  Google Scholar 

  198. Nishina PM, Naggert JK, Verstuyft J, Paigen B (1994) Atherosclerosis in genetically obese mice: the mutants obese, diabetes, fat, tubby, and lethal yellow. Metabolism 43(5):554–558

    Article  PubMed  CAS  Google Scholar 

  199. Vischer UM (1999) Hyperglycemia and the pathogenesis of atherosclerosis: lessons from murine models. Eur J Endocrinol 140(1):1–3

    Article  PubMed  CAS  Google Scholar 

  200. Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS et al (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4(9):1025–1031

    Article  PubMed  CAS  Google Scholar 

  201. Tse J, Martin-McNaulty B, Halks-Miller M, Kauser K, DelVecchio V, Vergona R et al (1999) Accelerated atherosclerosis and premature calcified cartilaginous metaplasia in the aorta of diabetic male Apo E knockout mice can be prevented by chronic treatment with 17 beta-estradiol. Atherosclerosis 144(2):303–313

    Article  PubMed  CAS  Google Scholar 

  202. Wu KK, Huan Y (2007) Diabetic atherosclerosis mouse models. Atherosclerosis 191(2):241–249

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Grundtman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Grundtman, C. (2012). Animal Models of Atherosclerosis. In: Wick, G., Grundtman, C. (eds) Inflammation and Atherosclerosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0338-8_8

Download citation

Publish with us

Policies and ethics