Skip to main content

Ursprung und Evolution der Charophyten

  • Chapter
  • First Online:
Armleuchteralgen

Zusammenfassung

This chapter presents a review of the most significant steps in charophyte evolution and its fossil record, which is amongst the most complete in fossil algae. It provides enough data to document the history of the group from the Silurian until the present. Fossil charophyte remains include mainly their calcified fructifications, i.e. utricles and gyrogonites, but also their fossil thalli. Palaeozoic represents the time when charophytes reached a maximum of diversity in the Bauplan of their fructifications, with the coexistence of three charophyte orders, Sycidiales, Moellerinales and Charales. The extinction of two of these orders at the end of the Palaeozoic led to a single type of fructification, the porocharacean gyrogonite that represents the charalean ancestor of all post-Palaeozoic charophytes. However, this ancestor diverged soon in two evolutionary lines, Polyplacata and Monoplacata, based on the presence of a multicellular vs single basal plate of the gyrogonite. This fundamental difference can be assumed representing two alternative types of female gametogenesis. Charophytes with a composite basal plate, the Polyplacata, developed diverse morphologies at the base of the Mesozoic (Triassic-Jurassic), most of them are traditionally ranged within the porocharaceans, characterised by an apical opening. These polyplacate porocharaceans are considered the ancestors of extant Nitella and Tolypella (sensu stricto), recorded already in the Jurassic and Cretaceous respectively. Monoplacata diversified in several steps, the first in the Upper Jurassic and Lower Cretaceous with the appearance of the utricle-bearing clavatoraceans, and the appearance of the first characean genera with a single basal-plate, including the oldest known Sphaerochara (equivalent to Tolypella sect. Rothia). The Clavatoraceae family dominated the wetlands on the Tethyan islands during the Lower Cretaceous relegating the porocharaceans to brackish environments. At the beginning of the Late Cretaceous (Cenomanian and Turonian) there is a gap in the fossil record. After this gap the monoplacate Characeae underwent an important radiation and expanded with the appearance of many genera including modern Chara, Lamprothamnium, and Lychnothamnus. This radiation occurred in parallel with the extinction of a few last species that remained from clavatoraceans and porocharaceans near the Cretaceous-Tertiary boundary. Genus Nitellopsis is documented since the lowermost Tertiary. Characeans reached their maximum of diversification in the Middle Eocene, with numerous genera whose gyrogonites were quite different from the modern ones. These morphological types regressed during the Late Eocene and the Early Oligocene when a global climatic shift occurred. Afterwards the charophytes were progressively reduced to the morphologies of the seven modern genera. Hence the Neogene to recent flora appears as an impoverished remnant of the flourishing of charophytes in the geological past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Anadón P, Feist M (1981) Charophytes et biostratigraphie du Paléogène inférieur du Bassin de l’Ebre Oriental. Palaeontographica Abt B 178(4–6):143–168

    Google Scholar 

  • Bilan W (1988) The epicontinental Triassic charophytes of Poland. Acta Paleobotanica 28:63–161

    Google Scholar 

  • Braun A (1853) Über die Richtungsverhältnisse der Saftströme in den Zellen der Characeen. Verhandlungen der Akademie der Wissenschaften Berlin 1853:45–76

    Google Scholar 

  • Feist M, Feist R (1997) Oldest record of a bisexual plant. Nature 385:401

    CAS  Google Scholar 

  • Feist M, Bhatia SB, Yadagiri P (1991) On the oldest representative of the family Characeae and its relationships with the Porocharaceae. Bulletin de la Société Botanique de France 138 Actualités Botaniques 1:25–32

    Google Scholar 

  • Feist M, Grambast-Fessard N, Guerlesquin M, Karol K, Lu H, McCourt RM, Wang Q, Shenzen Z (2005a) Charophyta Treatise on Invertebrate Paleontology. Part B., Protoctista 1, Bd. 1. The Geological Society of America, Boulder

    Google Scholar 

  • Feist M, Liu J, Tafforeau P (2005b) New insights into Paleozoic charophyte morphology and phylogeny. American Journal of Science 92:1152–1160

    Google Scholar 

  • Feist-Castel M (1977) Evolution of the charophyte floras in the Upper Eocene and Lower Oligocene of the Isle of Wight. Palaeontology 20:143–157

    Google Scholar 

  • Galbrun B, Feist M, Colombo F, Rocchia R, Tambareau Y (1993) Magnetostratigraphy and biostratigraphy of Cretaceous-Tertiary deposits, Ager Basin, Province of Lerida, Spain. Paleogeography, Paleoclimatology, Paleoecology 102:41–52

    Google Scholar 

  • García A (1994) Charophyta: their use in paleolimnology. Journal of Paleolimnology 10(1):43–52

    Google Scholar 

  • García A (1999) Quaternary charophytes from Salina del Bebedero, Argentina: their relation with extant taxa and palaeolimnological significance. Journal of Paleolimnology 21(3):307–323

    Google Scholar 

  • García A, Chivas A (2004) Quaternary and extant euryhaline Lamprothamnium Groves (Charales) from Australia: Gyrogonite morphology and paleolimnological significance. Journal of Paleolimnology 31(3):321–341

    Google Scholar 

  • Gess RW, Hiller N (1995) Late Devonian charophytes from the Witteberg Group, South Africa. Review of Palaeobotany and Palynology 89:417–428

    Google Scholar 

  • Goetz G (1899) Ueber die Entwickelung der Eiknospe bei den Characeen. Botanische Zeitschrift 57(1):1–13

    Google Scholar 

  • Grambast L (1959) Extension chronologique des genres chez les Charoideae. Société des Éditions Technip, Paris

    Google Scholar 

  • Grambast L (1962) Classification de l’embranchement des Charophytes. Naturalia Monspeliensia (série Botanique) 14:63–86

    Google Scholar 

  • Grambast L (1974) Phylogeny of the Charophyta. Taxon 23:463–481

    Google Scholar 

  • Grambast L, Soulié-Märsche I (1972) Sur l’ancienneté et la diversification des Nitellopsis (Charophytes). Paléobiologie Continentale III(3):1–14

    Google Scholar 

  • Gray J, Massa D, Boucot AJ (1982) Caradocian land plant microfossils from Libya. Geology 10:197–201

    Google Scholar 

  • Harris TM (1939) British Purbeck Charophyta. British Museum Natural History, London

    Google Scholar 

  • Heer O (1854) Discussion sur l’identité du Chara Meriani et helicteres. Bulletin de la Société Vaudoise des Sciences Naturelles III:278–281

    Google Scholar 

  • Horn af Rantzien H (1957) Nitellaceous Charophyte gyrogonites in the Rajmahal series (Upper Gondwana) of India. Stockholm Contributions in Geology 1(1):1–29

    Google Scholar 

  • Ishchenko TA, Ishchenko AA (1982) Charophytes found in the Upper Silurian of Podolia. In: Teslenko YV (Hrsg) Systematics and Evolution of Fossil Plants. Nauk Dumka, Kiev, S 21–32

    Google Scholar 

  • Kelman R, Feist M, Nigel HAT, Hass H (2004) Charophyte algae from Rhynie chert. Transactions of the Royal Society of Edinburgh: Earth Sciences 94:445–455

    Google Scholar 

  • Kidston R, Lang WH (1921) On Old Red Sandstone Plants showing structure from the Rhynie Chert Bed, Aberdeenshire. Part V. The Thallophyta. Transactions of the Royal Society Edinburgh 52(4):855–902

    Google Scholar 

  • Kovar-Eder J, Schwarz J, Wojcicki JJ (2002) The predominantly aquatic flora from Pellendorf, Lower Austria, Late Miocene, Pannonian – a systematic study. Acta Palaeobotanica 42(2):125–151

    Google Scholar 

  • Krassavina L (1971) Charophyta e sedimentis quaternariis partis australis depressioniis sibiriae occidentalis. Academia Scientiarum URSS, Leningrad, S 88–103

    Google Scholar 

  • Kyansep-Romashkina NP (1975) Some charophytes from the Upper Jurassic and the Cretaceous of Mongolia. The Joint Soviet-Mongolian Paleontological Expedition Transactions. In: Kramarenko NN (Hrsg) Fossil Fauna and Flora of Mongolia. Nauka, Moskow, S 181–204

    Google Scholar 

  • Lamarck JB (1804) Suite des mémoires sur les fossiles des environs de Paris. Annales du Muséum d’Histoire Naturelle Paris 5:349–357

    Google Scholar 

  • Lu HN, Soulié-Märsche I, Wang QF (1996) Evolution and Classification of Palaeozoic charophytes. Acta Micropalaeontologica Sinica 13:1–12

    CAS  Google Scholar 

  • Martín-Closas C (1996) A phylogenetic system of Clavatoraceae (Charophyta). Review of Palaeobotany and Palynology 94:259–293

    Google Scholar 

  • Martín-Closas C (2003) The fossil record and evolution of freshwater plants. A review. Geologica Acta 1:315–338

    Google Scholar 

  • Martín-Closas C, Diéguez C (1998) Charophytes from the Lower Cretaceous of the Iberian Ranges (Spain). Palaeontology 41:1133–1152

    Google Scholar 

  • Martín-Closas C, Schudack ME (1991) Phylogenetic analysis and systematisation of post-palaeozoic charophytes. Revue de la Société Botanique de France 138(1):53–71 (Actualités Botaniques)

    Google Scholar 

  • Martín-Closas C, Wang Q (2008) Historical biogeography of the lineage Atopochara trivolvis PECK 1941 (Cretaceous Charophyta). Palaeogeography, Palaeoclimatology, Palaeoecology 260:435–451

    Google Scholar 

  • Martín-Closas C, Bosch R, Serra-Kiel J (1999) Biomechanics and evolution of spiralization in charophyte fructifications. In: Kurmann MH, Hemsley AR (Hrsg) The evolution of plant architecture. Royal Botanic Gardens Kew, London, S 399–421

    Google Scholar 

  • McCourt RM, Karol KG, Guerlesquin M, Feist M (1996) Phylogeny of extant genera in the family Characeae (Charales, Charophyceae) based on rbcL sequences and morphology. American Journal of Botany 83:125–131

    Google Scholar 

  • Michaux-Ferrière N, Soulié-Märsche I (1987) The quantities of DNA in the vegetative nuclei of Chara vulgaris and Tolypella glomerata (Charophyta). Phycologia 26:435–442

    Google Scholar 

  • Mojon PO (1989) Polymorphisme ecophenotypique et paléoécologique des Porocharcées (Charophytes) du Crétacé Basal (Berriasien) du Jura Franco Suisse. Revue de Paléobiologie 2:505–524

    Google Scholar 

  • Musacchio EA (1971) Charophytas de la Formacion La Amarga (Cretacico inferior), Provincia Neuquén, Argentina. Revista del Museo de La Plata 6:19–38

    Google Scholar 

  • Musacchio EA (2000) Biostratigraphy and Biogeography of Cretaceous Charophytes from South America. Cretaceous Research 21:211–220

    Google Scholar 

  • Musacchio EA (2010) Upper Cretaceous Lychnothamnus, Nitella and Tolypella (Charophyta) from Zampal, Argentina. Cretaceous Research 31:461–472

    Google Scholar 

  • Musacchio EA, Moroni AM (1983) Charophyta y ostracoda no marinos Ecoterciarios de la formation El Carrizo en la provincia de Rio Negro, Argentina. Ameghiniana XX:21–33

    Google Scholar 

  • Ogg GO, Ogg G (2008) Update to Geologic time scale 2004. https://engineering.purdue.edu/Stratigraphy/charts/educational.html,. Zugegriffen: 2/2015

    Google Scholar 

  • Peck RE (1957) North American Charophyta. Geological Survey Professional Paper 294 A:1–44

    Google Scholar 

  • Racki G (1982) Ecology of the primitive charophyte algae; a critical review. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 162:388–399

    Google Scholar 

  • Riveline J (1986) Les Charophytes du Paléogène et du Miocène Inférieur d’Europe Occidentale. Ed. C.N.R.S., Paris

    Google Scholar 

  • Riveline J, Berger JP, Feist M, Martín-Closas C, Schudack M, Soulié-Märsche I (1996) European Mesozoic-Cenozoic Charophyte Biozonation. Bulletin Société Géologique de France 167:453–468

    CAS  Google Scholar 

  • Sanjuan J, Martín-Closas C (2012) Charophyte palaeoecology in the Upper Eocene of the Eastern Ebro basin (Catalonia, Spain). Biostratigraphic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 365–366:247–262

    Google Scholar 

  • Schudack ME (1993) Die Charophyten im Oberjura und Unterkreide Westeuropas. Mit einer phylogenetischer Analyse der Gesamtgruppe. Berliner geowissenschaftliche Abhandlungen A 8:1–209

    Google Scholar 

  • Schudack ME, Turner CE, Peterson F (1998) Biostratigraphy, paleoecology and biogeography of charophytes and ostracodes from the Upper Jurassic Morrison Formation, Western interior, USA. Modern Geology 22:379–414

    Google Scholar 

  • Schwarz J (1985) Revision der Charophyten-Flora der Süßwasserschichten und des Kalktertiärs im Mainzer Becken (Ober-Oligozän – Unter-Miozän. Mainzer geowissenschaftliche Mitteilungen 14:7–98

    Google Scholar 

  • Soulié-Märsche I (1979) Origine et évolution des genres actuels des Characeae. Bulletin du Centre de Recherches Exploration-Production Elf-Aquitaine 3:821–831

    Google Scholar 

  • Soulié-Märsche I (1989) Étude comparée de gyrogonites de charophytes actuelles et fossiles et phylogénie des genres actuels. Imprimerie des Tilleuls, Millau

    Google Scholar 

  • Soulié-Märsche I (2004) Charophyte gyrogonites, the result of enantioselective influence 250 Million years ago. In: Palyi G, Zucchi C, Caglioti C (Hrsg) Progress in Biological Chirality. Elsevier, Oxford, S 365–375

    Google Scholar 

  • Soulié-Märsche I, García A (2015) Gyrogonites and oospores, complementary viewpoints to improve the study of the charophytes (Charales). Aquatic Botany 120:7–17

    Google Scholar 

  • Soulié-Märsche I, Benammi M, Gemayel P (2002) Biogeography of living and fossil Nitellopsis (Charophyta) in relationship to new finds from Morocco. Journal of Biogeography 29:1703–1711

    Google Scholar 

  • Soulié-Märsche I, Benkaddour A, Elkhiati N, Gemayel P, Ramdani M (2008) Charophytes, indicateurs de paléo-bathymétrie du lac Tigalmamine (Moyen Atlas, Maroc). Geobios 41:435–444

    Google Scholar 

  • Souza Faria R, Ricardi-Branco F (2009) Leonardosia langeiSommer (Charophyta, Porocharaceae) from Corumbataí Formation (Guadalupian), Piracicaba, SP, Brazil: First record of an antheridium and of corticated thalli. Ameghiniana 46:49–57

    Google Scholar 

  • Stehlin HG (1910) Remarques sur les faunules de Mammifères des couches eocènes et oligocènes du Bassin de Paris. Bulletin de la Société Géologique de France 4:488–520

    Google Scholar 

  • Straub EW (1952) Mikropaläontologische Untersuchungen im Tertiär zwischen Ehingen und Ulm a.d. Donau. Geologisches Jahrbuch 66:433–523

    Google Scholar 

  • Timme RE, Bachvaroff TR, Delwiche CF (2012) Broad phylogenetic sampling and the sister lineage of land plants. PLoS ONE 7:e29696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uliana MA, Musacchio EA (1978) Microfosiles calcareos no-marinos del Cretacico superior en Zampal, Provincia de Mendoza, Argentina. Ameghiniana XV:111–135

    Google Scholar 

  • Villalba-Breva S, Martín-Closas C (2013) Upper Cretaceous palaeogeography of the Central Southern Pyrenean Basins (Catalonia, Spain) from microfacies analysis and charophyte biostratigraphy. Facies 59:319–345

    Google Scholar 

  • Wood RD (1962) New combinations and taxa in the revision of Characeae. Taxon 11:7–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martín-Closas, C., Soulié-Märsche, I. (2016). Ursprung und Evolution der Charophyten. In: Armleuchteralgen. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47797-7_4

Download citation

Publish with us

Policies and ethics