Skip to main content

Modulation of Peripheral Inflammation by the Spinal Cord

  • Chapter
Pain Control

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 227))

Abstract

The central nervous system, and the spinal cord in particular, is involved in multiple mechanisms that influence peripheral inflammation. Both pro- and anti-inflammatory feedback loops can involve just the peripheral nerves and spinal cord or can also include more complex, supraspinal structures such as the vagal nuclei and the hypothalamic-pituitary axis. Analysis is complicated by the fact that inflammation encompasses a constellation of end points from simple edema to changes in immune cell infiltration and pathology. Whether or not any of these individual elements is altered by any potential mechanism is determined by a complex algorithm including, but not limited to, chronicity of the inflammation, tissue type, instigating stimulus, and state/tone of the immune system. Accordingly, the pharmacology and anatomical substrate of spinal cord modulation of peripheral inflammation are discussed with regard to peripheral tissue type, inflammatory insult (initiating stimulus), and duration of the inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez FJ, Kavookjian AM, Light AR (1992) Synaptic interactions between GABA-immunoreactive profiles and the terminals of functionally defined myelinated nociceptors in the monkey and cat spinal cord. J Neurosci 12(8):2901–2917

    CAS  PubMed  Google Scholar 

  • Barber RP, Vaughn JE, Saito K, McLaughlin BJ, Roberts E (1978) GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord. Brain Res 141:35–55

    Article  CAS  PubMed  Google Scholar 

  • Bernardi PS, Valtschanoff JG, Weinberg RJ, Schmidt HH, Rustioni A (1995) Synaptic interactions between primary afferent terminals and GABA and nitric oxide-synthesizing neurons in superficial laminae of the rat spinal cord. J Neurosci 15(2):1363–1371

    CAS  PubMed  Google Scholar 

  • Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, Sudan S, Czura CJ, Ivanova SM, Tracey KJ (2002) Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 195(6):781–788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boettger MK, Weber K, Gajda M, Brauer R, Schaible HG (2010a) Spinally applied ketamine or morphine attenuate peripheral inflammation and hyperalgesia in acute and chronic phases of experimental arthritis. Brain Behav Immun 24(3):474–485

    Article  CAS  PubMed  Google Scholar 

  • Boettger MK, Weber K, Grossmann D, Gajda M, Bauer R, Bar KJ, Schulz S, Voss A, Geis C, Brauer R, Schaible HG (2010b) Spinal tumor necrosis factor alpha neutralization reduces peripheral inflammation and hyperalgesia and suppresses autonomic responses in experimental arthritis: a role for spinal tumor necrosis factor alpha during induction and maintenance of peripheral inflammation. Arthritis Rheum 62(5):1308–1318

    Article  CAS  PubMed  Google Scholar 

  • Bong GW, Rosengren S, Firestein GS (1996) Spinal cord adenosine receptor stimulation in rats inhibits peripheral neutrophil accumulation. The role of N-methyl-D-aspartate receptors. J Clin Invest 98(12):2779–2785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, Tracey KJ (2000a) Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci 85(1–3):141–147

    Article  CAS  PubMed  Google Scholar 

  • Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000b) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462

    Article  CAS  PubMed  Google Scholar 

  • Boyle DL, Moore J, Yang L, Sorkin LS, Firestein GS (2002) Stimulation of spinal adenosine (ADO) receptors inhibits inflammation and joint destruction in rat adjuvant arthritis. Arthritis Rheum 46(11):3076–3082

    Article  CAS  PubMed  Google Scholar 

  • Boyle DL, Jones TL, Hammaker D, Svensson CI, Rosengren S, Albani S, Sorkin L, Firestein GS (2006) Regulation of peripheral inflammation by spinal p38 MAP kinase in rats. PLoS Med 3(9):e338

    Article  PubMed Central  PubMed  Google Scholar 

  • Bressan E, Mitkovski M, Tonussi CR (2010) LPS-induced knee-joint reactive arthritis and spinal cord glial activation were reduced after intrathecal thalidomide injection in rats. Life Sci 87(15–16):481–489

    Article  CAS  PubMed  Google Scholar 

  • Bressan E, Peres KC, Tonussi CR (2012) Evidence that LPS-reactive arthritis in rats depends on the glial activity and the fractalkine-TNF-alpha signaling in the spinal cord. Neuropharmacology 62(2):947–958

    Article  CAS  PubMed  Google Scholar 

  • Brock SC, Tonussi CR (2008) Intrathecally injected morphine inhibits inflammatory paw edema: the involvement of nitric oxide and cyclic-guanosine monophosphate. Anesth Analg 106(3):965–971, table of contents

    Article  CAS  PubMed  Google Scholar 

  • Carlton SM, Hayes ES (1990) Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord. J Comp Neurol 300(2):162–182

    Article  CAS  PubMed  Google Scholar 

  • Castro-Lopes JM, Tavares I, Tolle TR, Coito A, Coimbra A (1992) Increase in GABAergic cells and GABA levels in the spinal cord in unilateral inflammation of the hindlimb in the rat. Eur J Neurosci 4(4):296–301

    Article  PubMed  Google Scholar 

  • Castro-Lopes JM, Tavares I, Tölle TR, Coimbra A (1994) Carrageenan-induced inflammation of the hind foot provokes a rise of GABA-immunoreactive cells in the rat spinal cord that is prevented by peripheral neurectomy or neonatal capsaicin treatment. Pain 56(2):193–201

    Article  CAS  PubMed  Google Scholar 

  • Cervero F, Laird JM (1996a) Mechanisms of allodynia: interactions between sensitive mechanoreceptors and nociceptors. Neuroreport 7(2):526–528

    Article  CAS  PubMed  Google Scholar 

  • Cervero F, Laird JM (1996b) Mechanisms of touch-evoked pain (allodynia): a new model. Pain 68(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Chen HS, He X, Wang Y, Wen WW, You HJ, Arendt-Nielsen L (2007) Roles of capsaicin-sensitive primary afferents in differential rat models of inflammatory pain: a systematic comparative study in conscious rats. Exp Neurol 204(1):244–251

    Article  CAS  PubMed  Google Scholar 

  • Coderre TJ, Basbaum AI, Helms C, Levine JD (1991) High-dose epinephrine acts at alpha 2-adrenoceptors to suppress experimental arthritis. Brain Res 544(2):325–328

    Article  CAS  PubMed  Google Scholar 

  • Colpaert FC, Donnerer J, Lembeck F (1983) Effects of capsaicin on inflammation and on the substance P content of nervous tissues in rats with adjuvant arthritis. Life Sci 32(16):1827–1834

    Article  CAS  PubMed  Google Scholar 

  • Courtright LJ, Kuzell WC (1965) Sparing effect of neurological deficit and trauma on the course of adjuvant arthritis in the rat. Ann Rheum Dis 24(4):360–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cronstein BN, Levin RI, Philips M, Hirschhorn R, Abramson SB, Weissmann G (1992) Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol 148(7):2201–2206

    CAS  PubMed  Google Scholar 

  • Cruwys SC, Garrett NE, Kidd BL (1995) Sensory denervation with capsaicin attenuates inflammation and nociception in arthritic rats. Neurosci Lett 193(3):205–207

    Article  CAS  PubMed  Google Scholar 

  • Daher JB, Tonussi CR (2003) A spinal mechanism for the peripheral anti-inflammatory action of indomethacin. Brain Res 962(1–2):207–212

    Article  CAS  PubMed  Google Scholar 

  • Donnerer J, Amann R, Lembeck F (1991) Neurogenic and non-neurogenic inflammation in the rat paw following chemical sympathectomy. Neuroscience 45(3):761–765

    Article  CAS  PubMed  Google Scholar 

  • Ebbinghaus M, Gajda M, Boettger MK, Schaible HG, Brauer R (2012) The anti-inflammatory effects of sympathectomy in murine antigen-induced arthritis are associated with a reduction of Th1 and Th17 responses. Ann Rheum Dis 71(2):253–261

    Article  CAS  PubMed  Google Scholar 

  • Ferrell WR, Russell NJ (1986) Extravasation in the knee induced by antidromic stimulation of articular C fibre afferents of the anaesthetized cat. J Physiol 379:407–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Green PG, Basbaum AI, Helms C, Levine JD (1991) Purinergic regulation of bradykinin-induced plasma extravasation and adjuvant-induced arthritis in the rat. Proc Natl Acad Sci U S A 88(10):4162–4165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Green PG, Miao FJ, Strausbaugh H, Heller P, Janig W, Levine JD (1998) Endocrine and vagal controls of sympathetically dependent neurogenic inflammation. Ann N Y Acad Sci 840:282–288

    Article  CAS  PubMed  Google Scholar 

  • Harle P, Mobius D, Carr DJ, Scholmerich J, Straub RH (2005) An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum 52(4):1305–1313

    Article  PubMed  Google Scholar 

  • Harle P, Pongratz G, Albrecht J, Tarner IH, Straub RH (2008) An early sympathetic nervous system influence exacerbates collagen-induced arthritis via CD4+CD25+ cells. Arthritis Rheum 58(8):2347–2355

    Article  PubMed  Google Scholar 

  • Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43:144–201

    Google Scholar 

  • Hood VC, Cruwys SC, Urban L, Kidd BL (2001) The neurogenic contribution to synovial leucocyte infiltration and other outcome measures in a guinea pig model of arthritis. Neurosci Lett 299(3):201–204

    Article  CAS  PubMed  Google Scholar 

  • Kane D, Lockhart JC, Balint PV, Mann C, Ferrell WR, McInnes IB (2005) Protective effect of sensory denervation in inflammatory arthritis (evidence of regulatory neuroimmune pathways in the arthritic joint). Ann Rheum Dis 64(2):325–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelley JM, Hughes LB, Bridges SL Jr (2008) Does gamma-aminobutyric acid (GABA) influence the development of chronic inflammation in rheumatoid arthritis? J Neuroinflammation 5:1

    Article  PubMed Central  PubMed  Google Scholar 

  • Levine JD, Moskowitz MA, Basbaum AI (1985) The contribution of neurogenic inflammation in experimental arthritis. J Immunol 135(2 Suppl):843s–847s

    CAS  PubMed  Google Scholar 

  • Levine JD, Dardick SJ, Roizen MF, Helms C, Basbaum AI (1986) Contribution of sensory afferents and sympathetic efferents to joint injury in experimental arthritis. J Neurosci 6:3423–3429

    CAS  PubMed  Google Scholar 

  • Levine JD, Coderre TJ, Helms C, Basbaum AI (1988) Beta 2-adrenergic mechanisms in experimental arthritis. Proc Natl Acad Sci U S A 85(12):4553–4556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin Q, Wu J, Willis WD (1999) Dorsal root reflexes and cutaneous neurogenic inflammation after intradermal injection of capsaicin in rats. J Neurophysiol 82(5):2602–2611

    CAS  PubMed  Google Scholar 

  • Lin Q, Zou X, Willis WD (2000) Adelta and C primary afferents convey dorsal root reflexes after intradermal injection of capsaicin in rats. J Neurophysiol 84(5):2695–2698

    CAS  PubMed  Google Scholar 

  • Lorton D, Lubahn C, Klein N, Schaller J, Bellinger DL (1999) Dual role for noradrenergic innervation of lymphoid tissue and arthritic joints in adjuvant-induced arthritis. Brain Behav Immun 13(4):315–334

    Article  CAS  PubMed  Google Scholar 

  • Lubahn CL, Schaller JA, Bellinger DL, Sweeney S, Lorton D (2004) The importance of timing of adrenergic drug delivery in relation to the induction and onset of adjuvant-induced arthritis. Brain Behav Immun 18(6):563–571

    Article  CAS  PubMed  Google Scholar 

  • Mapp PI, Kidd BL, Gibson SJ, Terry JM, Revell PA, Ibrahim NB, Blake DR, Polak JM (1990) Substance P-, calcitonin gene-related peptide- and C-flanking peptide of neuropeptide Y-immunoreactive fibres are present in normal synovium but depleted in patients with rheumatoid arthritis. Neuroscience 37(1):143–153

    Article  CAS  PubMed  Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150:7

    Article  Google Scholar 

  • Miller LE, Justen HP, Scholmerich J, Straub RH (2000) The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J 14(13):2097–2107

    Article  CAS  PubMed  Google Scholar 

  • Miller LE, Weidler C, Falk W, Angele P, Schaumburger J, Scholmerich J, Straub RH (2004) Increased prevalence of semaphorin 3C, a repellent of sympathetic nerve fibers, in the synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum 50(4):1156–1163

    Article  CAS  PubMed  Google Scholar 

  • Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA, Kaplan G (1993) Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 177(6):1675–1680

    Article  CAS  PubMed  Google Scholar 

  • Nolte D, Lorenzen A, Lehr HA, Zimmer FJ, Klotz KN, Messmer K (1992) Reduction of postischemic leukocyte-endothelium interaction by adenosine via A2 receptor. Naunyn Schmiedebergs Arch Pharmacol 346(2):234–237

    Article  CAS  PubMed  Google Scholar 

  • Pinter E, Than M, Chu DQ, Fogg C, Brain SD (2002) Interaction between interleukin 1beta and endogenous neurokinin 1 receptor agonists in mediating plasma extravasation and neutrophil accumulation in the cutaneous microvasculature of the rat. Neurosci Lett 318(1):13–16

    Article  CAS  PubMed  Google Scholar 

  • Pongratz G, Straub RH (2010) The B cell, arthritis, and the sympathetic nervous system. Brain Behav Immun 24(2):186–192

    Article  CAS  PubMed  Google Scholar 

  • Rees H, Sluka KA, Westlund KN, Willis WD (1994) Do dorsal root reflexes augment peripheral inflammation? Neuroreport 5(7):821–824

    Article  CAS  PubMed  Google Scholar 

  • Rees H, Sluka KA, Westlund KN, Willis WD (1995) The role of glutamate and GABA receptors in the generation of dorsal root reflexes by acute arthritis in the anaesthetized rat. J Physiol 484(Pt 2):437–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rose FR, Hirschhorn R, Weissmann G, Cronstein BN (1988) Adenosine promotes neutrophil chemotaxis. J Exp Med 167(3):1186–1194

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RF (1971) Presynaptic inhibition in the vertebrate nervous system. Rev Physiol Biochem Pharmacol 63:21–101

    Google Scholar 

  • Sluka KA, Westlund KN (1993) Centrally administered non-NMDA but not NMDA receptor antagonists block peripheral knee joint inflammation. Pain 55(2):217–225

    Article  CAS  PubMed  Google Scholar 

  • Sluka KA, Willis WD, Westlund KN (1993) Joint inflammation and hyperalgesia are reduced by spinal bicuculline. Neuroreport 5(2):109–112

    Article  CAS  PubMed  Google Scholar 

  • Sluka KA, Jordan HH, Westlund KN (1994a) Reduction in joint swelling and hyperalgesia following post-treatment with a non-NMDA glutamate receptor antagonist. Pain 59(1):95–100

    Article  CAS  PubMed  Google Scholar 

  • Sluka KA, Lawand NB, Westlund KN (1994b) Joint inflammation is reduced by dorsal rhizotomy and not by sympathectomy or spinal cord transection. Ann Rheum Dis 53(5):309–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sluka KA, Rees H, Westlund KN, Willis WD (1995) Fiber types contributing to dorsal root reflexes induced by joint inflammation in cats and monkeys. J Neurophysiol 74(3):981–989

    CAS  PubMed  Google Scholar 

  • Sorkin LS, Moore J, Boyle DL, Yang L, Firestein GS (2003) Regulation of peripheral inflammation by spinal adenosine: role of somatic afferent fibers. Exp Neurol 184(1):162–168

    Article  CAS  PubMed  Google Scholar 

  • Straub RH, Harle P (2005) Sympathetic neurotransmitters in joint inflammation. Rheum Dis Clin North Am 31(1):43–59, viii

    Article  PubMed  Google Scholar 

  • Straub RH, Mayer M, Kreutz M, Leeb S, Scholmerich J, Falk W (2000) Neurotransmitters of the sympathetic nerve terminal are powerful chemoattractants for monocytes. J Leukoc Biol 67(4):553–558

    CAS  PubMed  Google Scholar 

  • Svensson CI, Marsala M, Westerlund A, Calcutt NA, Campana WM, Freshwater JD, Catalano R, Feng Y, Protter AA, Scott B, Yaksh TL (2003) Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem 86(6):1534–1544

    Article  CAS  PubMed  Google Scholar 

  • Waldburger JM, Firestein GS (2010) Regulation of peripheral inflammation by the central nervous system. Curr Rheumatol Rep 12(5):370–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waldburger JM, Boyle DL, Edgar M, Sorkin LS, Levine YA, Pavlov VA, Tracey K, Firestein GS (2008a) Spinal p38 MAP kinase regulates peripheral cholinergic outflow. Arthritis Rheum 58(9):2919–2921

    Article  PubMed  Google Scholar 

  • Waldburger JM, Boyle DL, Pavlov VA, Tracey KJ, Firestein GS (2008b) Acetylcholine regulation of synoviocyte cytokine expression by the alpha7 nicotinic receptor. Arthritis Rheum 58(11):3439–3449

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921):384–388

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ren Y, Zou X, Fang L, Willis WD, Lin Q (2004) Sympathetic influence on capsaicin-evoked enhancement of dorsal root reflexes in rats. J Neurophysiol 92(4):2017–2026

    Article  PubMed  Google Scholar 

  • Willis WD Jr (1999) Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 124(4):395–421

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda S. Sorkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sorkin, L.S. (2015). Modulation of Peripheral Inflammation by the Spinal Cord. In: Schaible, HG. (eds) Pain Control. Handbook of Experimental Pharmacology, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46450-2_10

Download citation

Publish with us

Policies and ethics