Skip to main content

Tumor Suppressor Genes

  • Conference paper
Gene Therapy

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 27))

  • 197 Accesses

Abstract

The isolation of the first human tumor suppressor gene in 1986 fueled an immediate interest in gene replacement therapy as a novel treatment modality for human cancers (Friend et al. 1986) . The functional groundwork for the efficacy of this avenue of approach came from studies on the genetics of cancer using somatic cell genetics. The first report, in 1969, of the suppression of malignancy in hybrid cells between tumorigenic and nontumorigenic mouse cells provided evidence that normal cells possess genetic information capable of reversing many transformed features of tumor cells (Harris et al. 1969) . Since that initial study, many investigators have shown that introduction of normal genetic information into human cancer cells can cause suppression of cell growth in vitro and in vivo (Stanbridge 1992). Thus, the challenge facing scientists interested in the development of cancer gene therapies lies in the optimal delivery of potent tumor suppressor genes into tumor cells in vivo which can render them quiescent or prime them for destruction by other methods. This chapter will cover the identification of known tumor suppressor genes as well as the strategies to isolate novel tumor suppressor genes with different mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asselineau D, Prunieras M (1984) Reconstruction of simplified control of fabrication. Br J Dematol [Suppl] 111:219–211

    Article  Google Scholar 

  • Bader SA, Fasching C, Brodeur GM et al (1991) Dissociation of suppression of tumorigenicity and differentiation in vitro effected by transfer of single human chromosomes into human neuroblastoma cells. Cell Growth Differ 2:245–255

    PubMed  CAS  Google Scholar 

  • Benedict WF, Weissman BE, Mark C et al (1984) Tumorigenicity of humon HT 1080 fibrosarcoma X normal fibroblast hybrids: chromosome dosage dependency. Cancer Res 44:3471–3479

    PubMed  CAS  Google Scholar 

  • Bishop JM (1987) The molecular genetics of cancer. Science 235:305–311

    Article  PubMed  CAS  Google Scholar 

  • Bradbury LE, Kansas GS, Levy S et al (1992) The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 antigen. J Immunol 149:2841–2850

    PubMed  CAS  Google Scholar 

  • Bremmer R, Balmain A (1990) Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell 61:407–417

    Article  Google Scholar 

  • Call KM, Glaser T, Ito CY et al (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–520

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Ellmore N, Weissman BE et al (1994) Functional evidence for a second tumor suppressor gene on human chromosome 17. Mol Cell Biol 14:534–542

    PubMed  CAS  Google Scholar 

  • Conway K, Morgan D, Phillips K et al (1992) Tumorigenic suppression of a human cutaneous squamous cell carcinoma cell line in the nude mouse skin graft assay. Cancer Res 52:6487–6495

    PubMed  CAS  Google Scholar 

  • Crawford LV (1983) The 53000-dalton cellular protein and its role in transformation. Int Rev Exp Pathol 25:1–50

    PubMed  CAS  Google Scholar 

  • Dear TN, Kefford RF (1990) Molecular oncogenetics of metastasis. Mol Aspects Med 11:243–324

    Article  PubMed  CAS  Google Scholar 

  • Devilee P, Van Den Broek M, Mannens M et al (1991) Differences in patterns of allelic loss between two common types of adult cancer, breast and colon carcinoma, and Wilms’ tumor of childhood. Int J Cancer 47:817–821

    Article  PubMed  CAS  Google Scholar 

  • Dong JT, Lang PW, Rinker-Schaeffer CW et al (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886

    Article  PubMed  CAS  Google Scholar 

  • Dowdy SF, Fasching CL, Scanion DJ et al (1991) Suppression of tumorigenicity in Wilms’ tumor by the pl4:pl5 region of chromosome 11. Science 254:293–295

    Article  PubMed  CAS  Google Scholar 

  • Drummond IA, Madden SI et al (1992) Repression of the insulin-like growth factor II gene by the Wilms’ tumor suppressor WT1. Science 257:674–678

    Article  PubMed  CAS  Google Scholar 

  • Ege T, Ringertz NR (1974) Preparation of microcells by enucleation of micro-nucleated cells. Exp Cell Res 87:378–382

    Article  PubMed  CAS  Google Scholar 

  • Eliyahu D, Michalovitz D et al (1989) Wild-type p53 can inhibit oncogene-me-diated focus formation. Proc Natl Acad Sci USA 86:8763–8767

    Article  PubMed  CAS  Google Scholar 

  • Fearon ER, Cho KR, Nigro JM et al (1990) Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56

    Article  PubMed  CAS  Google Scholar 

  • Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1082–1093

    Article  Google Scholar 

  • Fournier REK, Ruddle FH (1977) Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc Natl Acad Sci USA 74:319–323

    Article  PubMed  CAS  Google Scholar 

  • Friend SH, Bernards S, Rogelj S et al (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646

    Article  PubMed  CAS  Google Scholar 

  • Fukudome K, Fururse M, Imai T et al (1992) Identification of membrane antigen C33 recognized by monoclonal antibodies inhibitory to human T-cell leukemia virus type 1 (HTLV-l)-induced syncytium formation: altered gly-cosylation of C33 antigen in HTLV-1-positive T cells. J Virol 66:1394–1401

    PubMed  CAS  Google Scholar 

  • Fung Y-K, Murphree Al, Tang A et al (1987) Structural evidence for the authenticity of the human retinoblastoma gene. Science 236:1657–1661

    Article  PubMed  CAS  Google Scholar 

  • Fusenig NE, Breitkreutz D, Dzarlieva RT, Boukamp P, Bohnert A, Tilgen W (1983) Growth and differentiation characteristics of transformed keratino-cytes from mouse and human skin in vitro and in vivo. J Invest Dermatol 81:168s–175s

    Article  PubMed  CAS  Google Scholar 

  • Futreal PA, Liu Q, Shattuck-Eidens D et al (1994) BRCAl mutations in primary breast and ovarian carcinomas. Science 266:120–122

    Article  PubMed  CAS  Google Scholar 

  • Geiser AG, Anderson MJ, Stanbridge EJ et al (1989) Suppression of tumorigenicity in human cell hybrids derived from cell lines expressing different activated ras oncogenes. Cancer Res 49:1572–1577

    PubMed  CAS  Google Scholar 

  • Gessler M, Poustka A et al (1990) Homozygous deletion in Wilms’ tumors of a zinc-finger gene identified by chromosome jumping. Nature 343:774–778

    Article  PubMed  CAS  Google Scholar 

  • Giard DJ, Aaronson SA, Todaro GJ et al (1974) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51:1417–1423

    Google Scholar 

  • Gioeli D, Conway K, Weissman BE et al (1997) Localization and characterization of a chromosome 11 tumor suppressor gene using organotypic raft cultures. Cancer Res 57:1157–1165

    PubMed  CAS  Google Scholar 

  • Groden J, Thilveris A, Samowitz W et al (1991) Identification and characterization of the familiar adenomatous polyposis coli gene. Cell 66:589–600

    Article  PubMed  CAS  Google Scholar 

  • Hahn H, Wicking C, Zaphiropoulos PG et al (1996a) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851

    Article  PubMed  CAS  Google Scholar 

  • Hahn SA, Schutte M, Hoque ATMS et al (1996b) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    Article  PubMed  CAS  Google Scholar 

  • Hampton GM, Mannerma A, Winquist R et al (1994a) Loss of heterozygosity in sporadic human breast carcinoma: a common region between llq22 and 1 lq23.3. Cancer Res 54:4586–4589

    PubMed  CAS  Google Scholar 

  • Hampton GM, Penny LA, Baorgen RN et al (1994b) Loss of heterozygosity in cervical carcinoma: subchromosomal localization of a putative tumor-suppressor gene to chromosome 1lq22-q24. Proc Natl Acad Sci USA 91:6953–6957

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Crenshaw T, Moulton T et al (1993) Tumor-suppressor activity of H19 RNA. Nature 365:764–767

    Article  PubMed  CAS  Google Scholar 

  • Harris H, Miller OJ, Klein G et al (1969) Suppression of malignancy by cell fusion. Nature 223:363–368

    Article  PubMed  CAS  Google Scholar 

  • Hartwell L (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71:543–546

    Article  PubMed  CAS  Google Scholar 

  • Helin K, Harlow E (1993) The retinoblastoma protein as a transcriptional repressor. Trends Cell Biol 3:43–46

    Article  PubMed  CAS  Google Scholar 

  • Heo DS, Snyderman C, Gollin SM et al (1989) Biology, cytogenetics and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines. Cancer Res 49:5167–5175

    PubMed  CAS  Google Scholar 

  • Huang Y, Meltzer SJ et al (1993) Altered messenger RNA and unique mutati-nal profiles of p53 and Rb in human esophageal carcinomas. Cancer Res 53:1889–1894

    PubMed  CAS  Google Scholar 

  • Imai T, Fukudome K, Tagai S et al (1992) C33 antigen recognized by monoclonal antibodies inhibitory to human T cell leukemia virus type 1-induced syncytium formation is a member of a new family of transmembrane proteins including CD9, CD37, CD53, and CD63. J Immunol 149:2879–2886

    PubMed  CAS  Google Scholar 

  • Johnson RL, Rothman Al, Xie J et al (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW, Nilbert MC, Su L-K, et al (1991a) Identification of FAP locus genes from chromosome 5q21. Science 253:661–669

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW, Nilbert MC, Vogelstein B et al (1991b) Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 251:1366–1370

    Article  PubMed  CAS  Google Scholar 

  • Koi M, Monta H, Yamada H et al (1989) Normal human chromosome 11 suppresses tumorigenicity of human cervical tumor cell line SiHa. Mol. Carcinogenesis 2:12–21

    Article  CAS  Google Scholar 

  • Kolodner RD (1996) Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev 10:1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Koufos A, Grundy P et al (1989) Familial Wiedemann-Beckwith syndrome and a second Wilms’ tumor locus both map to 11p15.5. Am J Hum Genet 44:711–719

    PubMed  CAS  Google Scholar 

  • Kratzke RA, Greatens TM, Rubins JB et al (1996) Rb and pl6 INK4a Expression in resected non-small cell lung tumors. Cancer Res 56:3415–3420

    PubMed  CAS  Google Scholar 

  • Latif F, Tory K, Gnarra J et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1320–1357

    Article  Google Scholar 

  • Lee W-H, Bookstein R, Hong F et al (1987) Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235:1394–1399

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yen C, Liaw D et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast and prostate cancer. Science 275:1943–1947

    Article  PubMed  CAS  Google Scholar 

  • Loh WE, Scrable HJ, Livanos E et al (1992) Human chromosome 11 contains two different growth suppressor genes for embryonal rhabdomyosarcoma. Proc Natl Acad Sci USA 89:1755–1759

    Article  PubMed  CAS  Google Scholar 

  • Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  PubMed  CAS  Google Scholar 

  • Misra BC, Srivatsan ES (1989) Localization of HeLa cell tumor-suppressor gene to the long arm of chromosome 11. Am J Human Genet 45:565–577

    CAS  Google Scholar 

  • Muktar H, Bickers DR (1993) Environmental skin cancer: mechanisms, models and human cancer. Cancer Res 53:3439–3442

    Google Scholar 

  • Negrini M, Rasio D, Hampton GM et al (1992) Suppression of tumorigenesis by the breast cancer cell line MCF-7 following transfer of normal human chromosome 11. Oncogene 7:2013–2018

    PubMed  CAS  Google Scholar 

  • Negrini M, Castagnoli A, Sabbioni S et al (1994) Suppression of tumorigenic-ity of breast cancer cells by microcell-mediated chromosome transfer: studies on chromosomes 6 and 11. Cancer Res 54:1331–1336

    PubMed  CAS  Google Scholar 

  • Negrini M, Sabbioni S, Possati L et al (1995) Definition and refinement of chromosome 11 regions of loss of heterozygosity in breast cancer: identification of a new region at 1lq23.3. Cancer Res 55:3003–3007

    PubMed  CAS  Google Scholar 

  • Nigro JM, Baker SJ, Preisinger AC et al (1989) Mutations in the p53 gene occur in diverse human tumor types. Nature 342:705–708

    Article  PubMed  CAS  Google Scholar 

  • Nojima Y, Hirose T, Tachibana K et al (1993) The 4F9 antigen is a member of the tetraspan transmembrane protein family and functions as an accessory molecule in T cell activation and adhesion. Cell Immunol 152:249–260

    Article  PubMed  CAS  Google Scholar 

  • Pasquale SR, Jones GR, Doersen C-J et al (1988) Tumorigenicity and oncogene expression in pediatric cancers. Cancer Res 48:2715–2719

    PubMed  CAS  Google Scholar 

  • Pereira-Smith OM, Smith JR (1983) Evidence for the recessive nature of cellular immortality. Science 221:964–966

    Article  PubMed  CAS  Google Scholar 

  • Phillips KK, Welch DR, Miele ME et al (1996) Suppression of MDA-MB-435 breast carcinoma cell metastasis following the introduction of human chromosome 11. Cancer Res 56:1222–1227

    PubMed  CAS  Google Scholar 

  • Phillips KK, White AE, Hicks DJ et al (1998) Correlation between reduction of metastasis in the MDA-MB-435 model system and increased expression of the Kai-1 protein. Mol Carcinog 21:111–120

    Article  PubMed  CAS  Google Scholar 

  • Pietenpol JA, Stein RW, Moran E et al (1990) TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61:777–785

    Article  PubMed  CAS  Google Scholar 

  • Qazilbash MH, Xiao X, Seth P et al (1997) Cancer gene therapy using a novel adeno-associated virus vector expressing human wild -type p53. Gene Ther 4:675–682

    Article  PubMed  CAS  Google Scholar 

  • Reed AL, Califano J, Cairns P et al (1996) High frequency of pl6 (CDKN2/MTS-1/INK4 A) inactivation in head and neck squamous cell carcinoma. Cancer Res 56:3630–3633

    PubMed  CAS  Google Scholar 

  • Reeve AE, Sih SA, Raizis AM et al (1989) Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms’ tumor cells. Mol Cell Biol 9:1799–1803

    PubMed  CAS  Google Scholar 

  • Reid LH, West A, Gioii DG et al (1996) Localization of a tumor suppressor gene in 11p15.5 using the G401 Wilms’ tumor assay. Hum Mol Genet 5:239–247

    Article  PubMed  CAS  Google Scholar 

  • Rotter V, Foord O, Navot N (1993) In search of the functions of normal p53 protein. Trends Cell Biol 3:43–46

    Article  Google Scholar 

  • Savitsky K, Bar-Shira A, Gilad S et al (1995) A single ataxia telangeictasia gene with a product similar to PI-3 kinase. Science 268:1749–1753

    Article  PubMed  CAS  Google Scholar 

  • Saxon PJ, Srivatsan ES, Stanbridge EJ (1986) Introduction of human chromosome 11 via microcell transfer controls tumorigenic expression of HeLa cells. EMBO J 5:3461–3466

    PubMed  CAS  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  PubMed  CAS  Google Scholar 

  • Stanbridge EJ (1992) Functional evidence for human tumor suppressor genes: chromosomal and molecular genetic studies. Cancer Surv 12:5–24

    PubMed  CAS  Google Scholar 

  • Stanbridge EJ, Flandemeyer R, Daniels D et al (1981) Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids. Somat Cell Genet 7:699–712

    Article  PubMed  CAS  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA et al (1997) Identification of a candidate tumor suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362

    Article  PubMed  CAS  Google Scholar 

  • Steeg PS, Bevilacqua G, Pozzatti R et al (1988) Altered expression of NM23, a gene associated with low tumor metastic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 48:6550–6554

    PubMed  CAS  Google Scholar 

  • Takahashi S, Doss C, Levy S et al (1990) Tapa-1, the target of an antiproliferative antibody, is associated on the cell surface with the Leu-13 antigen. J Immunol 145:2207–2213

    PubMed  CAS  Google Scholar 

  • Tlsty T, White A, Sanchez J (1992) Suppression of gene amplification in human cell hybrids. Science 255:1425–1427

    Article  PubMed  CAS  Google Scholar 

  • Trent J, Yang JM, Emerson J et al (1993) Clonal chromosome abnormalities in human breast carcinomas: thirty-four cases with metastatic disease. Genes Chromos Cancer 7:194–203

    Article  PubMed  CAS  Google Scholar 

  • Trofatter JA, MacCollin MM, Rutter JL et al (1993) A novel Moesin-Ezrin-Radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor gene. Cell 72:791–800

    Article  PubMed  CAS  Google Scholar 

  • Virtaneva KI, Emi N, Marken JS et al (1994) Chromosomal localization of three human genes coding for A15, L6, and S5.7 (TAPA1): all members of the transmembrane 4 superfamily of proteins. Immunogenetics 39:329–334

    Article  PubMed  CAS  Google Scholar 

  • Viskochil D, Buchberg AM, Xu G et al (1990) Deletions and a translocation interrupt a cloned at the neurofibromatosis type 1 locus. Cell 62:187–192

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Fearon ER, Kern SE et al (1989) Allelotype of colorectal carcinomas. Science 244:207–211

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (1992) p53 function and dysfunction. Cell 70:523–529

    Article  PubMed  CAS  Google Scholar 

  • Wallace MR, Marchuk DA, Anderson LB et al (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249:181–186

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Madden SL, Deuel TF et al (1992) The Wilms’ tumor gene product, WT1 represses transcription of the platelet-derived growth factor A-chain gene. J Biol Chem 267:21999–22002

    PubMed  CAS  Google Scholar 

  • Weinberg RA (1989) The molecular basis of retinoblastomas. Ciba Found Symp 142:99–105

    PubMed  CAS  Google Scholar 

  • Weissman BE (1990) Genetic behaviour of tumor genicity in human cancer. In: Cavenee W, Ponder B, Solomon E (eds) Cancer surveys-genetics and cancer, vol 9. Oxford University Press, Oxford, pp 475–485

    Google Scholar 

  • Weissman BE, Conway K (1995) Genetic aspects of tumor suppressor genes. Adv Genome Biol 3A: 137–156

    Google Scholar 

  • Weissman BE, Saxon PJ, Pasquale SR et al (1987) Introduction of a normal human chromosome 11 into a Wilms’ tumor cell line controls its tumorigenic expression. Science 236:175–180

    Article  PubMed  CAS  Google Scholar 

  • Weissman BE, Stanbridge EJ (1983) Complementation of the tumorigenic phenotype in human cell hybrids. J Natl Cancer Inst 70:666–672

    Google Scholar 

  • Wilson JL, Dollard SC, Chow LT, Broker TR (1992) Epithelial-specific gene expression during differentiation of stratified primary human keratinocyte cultures. Cell Growth Differ 3:471–483

    CAS  PubMed  Google Scholar 

  • Winquist R, Mannerma A, Alvaikko M et al (1993) Refinement of regional loss of heterozygosity for chromosome 11pl5.5 in human breast tumors. Cancer Res 53:4486–4488

    Google Scholar 

  • Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    Article  CAS  PubMed  Google Scholar 

  • Wright MD, Tomlinson MG (1994) The ins and outs of the transmembrane 4 superfamily. Immunol Today 15:588–594

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Zhang H, Beach D (1992) D type Cyclins associated with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71:505–514

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Wake N, Fujimoto S et al (1990) Multiple chromosomes carrying tumor suppressor activity for a uterine endometrial carcinoma cell line identified by microcell-mediated chromosome transfer. Oncogene 5:1141–1147

    PubMed  CAS  Google Scholar 

  • Yang X, Welch DR, Philips KK et al (1997) KaII, a putative marker for metastatic potential in human breast cancer. Cancer Lett 119:149–155

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Tombline G, Weber WL et al (1998) BRCA1, BRCA2, and DNA damage response: collision or collusion? Cell 92:433–436

    Article  PubMed  CAS  Google Scholar 

  • Zutter MM, Cantora SA, Stotz WD et al (1995) Re-expression of the @2ßl integrin abrogates the malignant phenotype of breast carcinoma cells. Proc Natl Acad Sci USA 92:7411–7415

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

R. E. Sobol K. J. Scanlon E. Nestaas

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weissman, B.E. (1998). Tumor Suppressor Genes. In: Sobol, R.E., Scanlon, K.J., Nestaas, E. (eds) Gene Therapy. Ernst Schering Research Foundation Workshop, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03577-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03577-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03579-5

  • Online ISBN: 978-3-662-03577-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics