Skip to main content

Structured Mixing: Heterogeneous Mixing by the Definition of Activity Groups

  • Chapter
Mathematical and Statistical Approaches to AIDS Epidemiology

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 83))

Abstract

Motivated by the needs of our models of spread of HIV, we have devised a way of specifying non-random contacts between subgroups in a population. Population heterogeneity is characterized by dividing the population into disjoint subgroups, the population subgroups. The contacts of the population subgroups are then partitioned into activity groups. The activity groups are defined in terms of processes that drive the contacts or in terms of the arenas where contacts are made by specifying the allocations of the contacts of the population subgroups to activity groups. All mixing is within activity groups and may, in general, be by any mechanism that gives a symmetric contact matrix. This method handles heterogeneity in mixing in a simple manner while automatically satisfying the inherent constraints on contact matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson, P.R. and B. Rothschild. (1988). Sex, drugs and matrices: Mathematical prediction of HIV infection. J. Sex Res., 25, 106–122.

    Article  Google Scholar 

  • Anderson, R.M. and R.M. May. (1985). Age-related changes in the rate of disease transmission: Implications for the design of vaccination programmes. J. Eyg. Cam., 94, 365–426.

    Google Scholar 

  • Anderson, R.M., G.F. Medley, R.M. May and A.M. Johnson. (1986). A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J. Math. Appl Med. Biol., 3, 229–263.

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour, A.D. (1978). MacDonald’s model and the transmission of bilharzia. Trans. Roy. Soc. Trop. Med. Hyg., 72, 6–15.

    Article  Google Scholar 

  • Bartlett, M.S. (1956). Deterministic and stochastic models for recurrent epidemics. Proc. Srd Berkeley Symp. on Math. Stat, and Prob., vol. 4, pp 81–109.

    MathSciNet  Google Scholar 

  • Blythe, S.P. and C. Castillo-Chavez. (1989). Like-with-like preference and sexual mixing models. Math. Biosci., (in press).

    Google Scholar 

  • DeGruttola, V. and K.H. Mayer. (1988). Assessing and modeling heterosexual spread of the human immunodeficiency virus in the United States. Rev. of Infect. Dis., 10, 138–150.

    Article  Google Scholar 

  • Dietz, K. (1988a). The first epidemic model: A historical note on P.D. Enko. Austral. J. Stat, 30A, 56–65.

    Article  Google Scholar 

  • Dietz, K. (1988b). On the transmission dynamics of HIV. Math. Biosci., 90, 397–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Dietz, K. and K.P. Hadeler. (1988). Epidemiological models for sexually transmitted diseases. J. Math. Biol. 26, 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Dietz, K. and D. Schenzle. (1985). Mathematical models for infectious disease statistics. In A Celebration of Statistics. The ISI Centenary Volume, A.C. Atkinson and S.E. Feinberg, (eds.), Springer, New York, Ch. 8, 167–204.

    Google Scholar 

  • Elveback, L., E. Ackerman, L. Gatewood and J.P. Fox. (1971). Stochastic two-agent epidemic simulation models for a community of families. Am. J. Epidem., 93, 267–280.

    Google Scholar 

  • Elveback, L.R., J.P. Fox, E. Ackerman, A. Langworthy, M. Boyd and L. Gatewood. (1976). An influenza simulation model for immunization studies. Am. J. Epidem., 103, 152–165.

    Google Scholar 

  • Fox, J.P., C.E. Hall and L.R. Elveback. (1970). Epidemiology. The MacMillan Co., New York.

    Google Scholar 

  • Haskey, H.W. (1957). Stochastic cross-infection between two otherwise isolated groups. Biometrika, 44, 193–204.

    MathSciNet  MATH  Google Scholar 

  • Hethcote, H.W. (1989). A model for HIV transmission and AIDS, (in press)

    Google Scholar 

  • Hethcote, H.W. and J.W. Van Ark. (1987). Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation and immunization programs. Math. Biosci., 84, 85–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote, H.W., J.A. Yorke and A. Nold. (1982). Gonorrhea modeling: A comparison of control methods. Math. Biosci., 58, 93–109.

    Article  MATH  Google Scholar 

  • Hethcote, H.W. and J.A. Yorke. (1984). Gonorrhea Transmission Dynamics and Control. Lecture Notes in Biomath., No. 56, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Hyman, J.M. and E.A. Stanley. (1988). Using mathematical models to understand the AIDS epidemic. Math. Biosci., 90, 415–474.

    Article  MathSciNet  MATH  Google Scholar 

  • Hyman, J.M. and E.A. Stanley. (1989). The effect of social mixing patterns on the spread of AIDS. Proc. Math. Appr. to Environmental and Ecological Problems., Springer-Verlag, (to appear)

    Google Scholar 

  • Jacquez, J.A., C.P. Simon, J. Koopman, L. Sattenspiel and T. Perry. (1988). Modeling and analyzing HIV transmission: The effect of contact patterns. Math. Biosci., 92, 119–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Kermack, W.O. and A.G. McKendrick. (1927). A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London A, 115, 700–721.

    Article  MATH  Google Scholar 

  • Knox, E.G. (1986). A transmission model for AIDS. Eur. J. Epidem., 2, 165–177.

    Article  Google Scholar 

  • Koopman, J., C.P. Simon, J. Jacquez, J. Joseph, L. Sattenspiel and T. Park. (1988). Sexual partner selectiveness effects on homosexual HIV transmission dynamics. J. AIDS, 1, 486–504.

    Google Scholar 

  • Koopman, J., C.P. Simon, J.A. Jacquez, T.S. Park. (1989). Selective contact within structured mixing groups; With an application to the analysis of HIV transmission risk from oral and anal sex. This volume.

    Google Scholar 

  • Longini, I.M.Jr., E. Ackerman and L.R. Elveback. (1978). An optimization model for influenza A epidemics. Math. Biosci., 38, 141–157.

    Article  Google Scholar 

  • May, R.M. and R.M. Anderson. (1984). Spatial heterogeneity and the design of immunization programs. Math. Biosci., 72, 83–111.

    Article  MathSciNet  MATH  Google Scholar 

  • May, R.M. and R.M. Anderson. (1987). Transmission dynamics of HIV infection. Nature, 326, 137–142.

    Article  Google Scholar 

  • May, R.M., R.M. Anderson and A.R. McLean. (1988). Possible demographic consequences of HIV/AIDS epidemics. I. Assuming HIV infection always leads to AIDS. Math. Biosci., 90, 475–505.

    Article  MathSciNet  MATH  Google Scholar 

  • Mode, C.J., H.E. Gollwitzer and N. Herrmann. (1988). A methodological study of a stochastic model of an AIDS epidemic. Math. Biosci., 92, 201–229.

    Article  MathSciNet  MATH  Google Scholar 

  • Nold, A. (1980). Heterogeneity in disease transmission modeling. Math. Biosci., 52, 227–240.

    Article  MathSciNet  MATH  Google Scholar 

  • Pickering, J., J.A. Wiley, N.S. Padian, L.E. Lieb, D.G. Echenberg and J. Walker. (1986). Modeling the incidence of acquired immunodeficiency syndrome (AIDS) in San Francisco, Los Angeles and New York. Math. Modeling, 7, 661–688.

    Article  Google Scholar 

  • Post, W.M., D.L. DeAngelis and C.C. Travis. (1983). Endemic disease in environments with spatially heterogeneous host populations. Math. Biosci. 63, 289–302.

    Article  MathSciNet  MATH  Google Scholar 

  • Ross, R. (1911). The Prevention of Malaria, 2nd ed., John Murray, London.

    Google Scholar 

  • Rushton, S. and A.J. Mautner. (1955). The deterministic model of a simple epidemic for more than one community. Biometrika, 42, 126–132.

    MathSciNet  MATH  Google Scholar 

  • Rvachev, L.A. and I.M. Longini Jr. (1985). A mathematical model for the global spread of influenza. Math. Biosci., 75, 3–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Sattenspiel, L. (1987). Population structure and the spread of disease. Human Biol., 59, 411–438.

    Google Scholar 

  • Sattenspiel, L. and C.P. Simon. (1988). The spread and persistence of infectious diseases in structured populations. Math. Biosci., 90, 341–366.

    Article  MathSciNet  MATH  Google Scholar 

  • Serfling, R.E. (1952). Historical review of epidemic theory. Human Biol, 24, 145–166.

    Google Scholar 

  • Soper, H.E. (1929). The interpretation of periodicity in disease prevalence. J. Roy. Stat. Soc, 92, 34–73.

    Article  Google Scholar 

  • Taylor, I. and J. Knowelden. (1964). Principles of Epidemiology. Little, Brown & Co., Boston.

    Google Scholar 

  • Travis, C.C. and S.M. Lenhart. (1987). Eradication of infectious diseases in heterogeneous populations. Math. Biosci., 83, 191–198.

    Article  MathSciNet  MATH  Google Scholar 

  • Watson, R.K. (1972). On an epidemic in a stratified population. J. Appl. Prob., 9, 659–666.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacquez, J.A., Simon, C.P., Koopman, J. (1989). Structured Mixing: Heterogeneous Mixing by the Definition of Activity Groups. In: Castillo-Chavez, C. (eds) Mathematical and Statistical Approaches to AIDS Epidemiology. Lecture Notes in Biomathematics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93454-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93454-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52174-7

  • Online ISBN: 978-3-642-93454-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics