Skip to main content

Applications of Magnetic Resonance Spectroscopy to Nutrition and Metabolism

  • Chapter
Metabolic Support of the Critically Ill Patient

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 17))

Abstract

The development of magnetic resonance spectroscopy (MRS) has made it possible to examine cellular and organellar function non-invasively and to improve our understanding of the pathophysiological and clinical changes observed in many disease states. Various MRS techniques allow investigators to study intracellular abnormalities, their biochemical bases, and the mechanisms by which they occur. These responses are important to understand since they often antedate the development of more overt manifestations of disease and end-state organ failure. Organ systems that have been studied include muscle, heart, brain, and liver.

“Disease can impose an extreme short term disturbance, which leads to a regulatory catastrophe, or instability of metabolic control, in individual cells, whole organs, or the total organism. All these processes and phenomena have their molecular basis in the underlying biochemical events that are functionally expressed only in the living cells or organisms.”[1, 2]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chance B, Clark BJ, Nioka S, et al (1985) Phosphorus nuclear magnetic resonance spectroscopy in vivo. Circulation 72 (Supp IV): 103–110

    Google Scholar 

  2. Radda GK (1992) Control, bioenergetics, and adaptation in health and disease: Noninvasive biochemistry from nuclear magnetic resonance. FASEB J 6:3032–3038

    PubMed  CAS  Google Scholar 

  3. Bore PJ (1985) Principles and applications of phosphorus magnetic resonance spectroscopy. In: Kressel HY (ed) Magnetic Resonance Annual. New York, Raven Press, pp 45–69

    Google Scholar 

  4. Forsen S, Hoffman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39:2892–2901

    Article  CAS  Google Scholar 

  5. Holtzman D, Offutt M, Tsuji M, et al (1993) Creatine kinase reaction rate in the cyanide poisoned mouse brain. J Cerebral Blood Flow and Metabolism 13:153–161

    Article  CAS  Google Scholar 

  6. Carlsson C (1975) Metabolic changes in the cerebral cortex of the rat induced by intravenous pentphalsodium. Acta Anaesth Scand 57:1–17

    CAS  Google Scholar 

  7. Petroff OAC, Prichard JW, Behar KL, et al (1984) In vivo phosphorus nuclear magnetic resonance spectroscopy in status epilepticus. Ann Neurol 16:169–177

    Article  PubMed  CAS  Google Scholar 

  8. Rudin M, Sauter A (1989) The rate constants of the creatine kinase reaction in rat brain: A probe for brain function? Society for Magnetic Resonance in Medicine, Eighth Annual Scientific Meeting, vol 1:489

    Google Scholar 

  9. Atkinson DE (1977) Cellular energy metabolism and its regulation. Academic Press, Orlando, FL

    Google Scholar 

  10. Chance B, Veech RL (1988) Phosphorus magnetic resonance spectroscopy as a probe of nutritional state. In: Kinney JM, Jeejeebhoy KN, Hill GH, Owen OE (eds) Nutrition and metabolism in patient care. Philadelphia, WB Saunders Co. pp 119–128

    Google Scholar 

  11. Fehlig P, Warren J (1975) Fuel homeostasis in exercise. N Engl J Med 293:1078–1081

    Article  Google Scholar 

  12. Argov Z, Chance B (1991) Phosphorus magnetic resonance spectroscopy in nutritional research. In: Olson RE, Bier DM, McCormick DB (eds). Annual Review of Nutrition. Annual Reviews Inc Palo Alto, California, vol 11, pp 449–464

    Google Scholar 

  13. Chance B, Eleff S, Leigh JS, et al (1981) Mitochondrial regulation of phosphocreatine/ inorganic phosphate ratios in exercising human muscle: A gated 31P NMR study. Proc Natl Acad Sci USA 68:6714–6718

    Article  Google Scholar 

  14. Chance B, Leigh JS Jr, Clark B, et al (1985) Control of oxidative metabolism and oxygen delivery in human skeletal muscle: A steady state analysis of the work/energy cost transfer function. Proc Natl Acad Sci USA. 82:8384–8388

    Article  PubMed  CAS  Google Scholar 

  15. Jacobs DO, Whitman G, Maris J, et al (1985) 31P Nuclear magnetic resonance spectroscopy of rat skeletal muscle during starvation. JPEN 9:107a (Abs)

    Google Scholar 

  16. Pichard C, Vaughan C, Struk R, Armstrong RL, Jeejeebhoy KN (1988) Effect of dietary manipulation (fasting, hypocaloric feeding, and subsequent refeeding) on rat muscle energetics as assessed by nuclear magnetic resonance spectroscopy. J Clin Invest 82:895–901

    Article  PubMed  CAS  Google Scholar 

  17. Jacobs DO, Kobayashi T, Wilmore DW (1990) Starvation alters forward flux through the creatine kinase pathway. Association for Academic Surgery (Abs)

    Google Scholar 

  18. Jacobs DO, Kobayashi T, Imagire J, et al (1991) Sepsis alters skeletal muscle energetics and membrane function. Surgery 110:318–326

    PubMed  CAS  Google Scholar 

  19. Koruda MJ, Argov Z, Maris J, et al (1985) 31-Phosphorus nuclear magnetic resonance spectroscopy of stimulated muscle during starvation. Surg Forum 26:260–261

    Google Scholar 

  20. Jiang ZM, He GZ, Zhang SY, Wang XR, et al (1989) Low dose growth hormone and hypocaloric nutrition attenuate the protein-catabolic response after major operation. Ann Surg 210:513–524

    Article  PubMed  CAS  Google Scholar 

  21. Tilney NL, Bailey GL, Morgan AP (1973) Sequential system failure after rupture of abdominal aortic aneurysms: An unsolved problem in postoperative care. Ann Surg 178:117–122

    Article  PubMed  CAS  Google Scholar 

  22. Deitch EA (1992) Multiple organ failure. Ann Surg 216:117–134

    Article  PubMed  CAS  Google Scholar 

  23. Cerra FB, Walvatne C (1990) Hepatic dysfunction in multiple organ failure, in: Deitch EA (ed) Multiple organ failure: Pathophysiology and basic concepts of therapy. Thieme Medical Publishers, Inc New York, pp 241–260

    Google Scholar 

  24. Munro HN, Crim MC (1988) The proteins and amino acids. In: Shils ME, Young VR (eds) Modern Nutrition in Health and Disease. Lea and Febiger, Philadelphia, pp 137–150

    Google Scholar 

  25. Ozawa K, Aoyama H, Yasuda K, et al (1983) Metabolic abnormalities associated with postoperative organ failure. Arch Surg 118:1245–1251

    Article  PubMed  CAS  Google Scholar 

  26. Pelias ME, Townsend MC (1992) In vivo 31P NMR assessment of early hepatocellular dysfunction during endotoxemia. J Surg Res 52:505–509.

    Article  PubMed  CAS  Google Scholar 

  27. Angus PW, Dixon RM, Rajagopala B, et al (1990) A study of patients with alcoholic liver disease by 31P nuclear magnetic resonance spectroscopy. Clin Sci 78:33–38

    PubMed  CAS  Google Scholar 

  28. Bates TE, Williams SR, Proctor E, Gadian DG (1988) Investigation of drug induced acute liver failure by 31P NMR and conventional biochemical methods: The importance of absolute concentrations. NMR in Biomed 1:67–71

    Article  CAS  Google Scholar 

  29. Kobayashi T, Robinson MK, Rounds JD, et al (1992) Depression of hepatocyte energy status during systemic infection: An in vivo 31P magnetic resonance spectroscopy study. Surg Forum 53:11–13

    Google Scholar 

  30. Hachisuka, T, Nakayama S, Tomita T, Takagi H (1992) 31P Nuclear magnetic resonance study of phospholipid metabolites in ischemic liver. J Surg Res 53:251–256

    Article  PubMed  CAS  Google Scholar 

  31. Dawson RMC (1987) Liver glycerophosphorylcholine phosphodiesterase. Biochem J 62:689–695

    Google Scholar 

  32. Reilly PM, Schiller HJ, Bulkley GB (1991) Reactive oxygen metabolites in shock. In: Wilmore DW, Brenan ME, Harken AH, Holcroft JW, Meakins JL (eds) Care of the Surgical Patient. New York, Scientific American, Inc, pp 130–132

    Google Scholar 

  33. Meister A, Anderson ME (1983) Glutathione. Ann Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  34. Martensson J (1986) The effect of fasting in leukocyte and plasma glutathione and sulfur amino acid concentration. Metabolism 35:118–121

    Article  PubMed  CAS  Google Scholar 

  35. Shi ECP, Fisher R, McEvoy M, Vantol R, Rose M, Ham JM (1982) Factors influencing hepatic glutathione concentrations: A study in surgical patients. Clin Sci 62:279–283

    PubMed  CAS  Google Scholar 

  36. Corbucci GG, Gasparetto A, Candiani A, et al (1985) Shock induced damage to mitochondrial function and some cellular antioxidant mechanisms in humans. Circ Shock 15:15–26

    PubMed  CAS  Google Scholar 

  37. Keller GA, Barke R, Harty JT, Humphrey E, Simmons RL (1985) Decreased hepatic glutathione levels in septic shock. Arch Surg 120:941–945

    Article  PubMed  CAS  Google Scholar 

  38. Robinson MK, Rounds JD, Jacobs DO, Wilmore DM (1992) Glutathione deficiency increases organ dysfunction after hemorrhagic shock. Surgery 112:140–149

    PubMed  CAS  Google Scholar 

  39. Kobayashi T, Robinson MK, Robinson V, De Rosa E, Wilmore DW, Jacobs DO (1993) Hepatic glutamine depletion induces hepatocellular injury and alters high energy phosphate metabolism. J Surg Res 54:189–195

    Article  PubMed  CAS  Google Scholar 

  40. Hyslop PA, Hinshaw DB, Halsey WA, et al (1988) Mechanisms of oxidant-mediated cell injury. J Biol Chem 263:1665–1675

    PubMed  CAS  Google Scholar 

  41. Robinson MK, Kobayashi T, Rounds JD, et al (1992) Glutamine enhances hepatocellular energetics during sepsis. Surg Forum 43:171–174

    Google Scholar 

  42. Hinshaw DB, Burger JM, Delius RE, Hyslop PA (1990) Mechanism of protection of oxidan injured endothelial cells by glutamine. Surgery 108:298–305

    PubMed  CAS  Google Scholar 

  43. Hong RW, Robinson MK, Rounds JD, Wilmore DW (1991) Glutamine protects the liver following Corynebacterium parvum/endotoxin-induced hepatic necrosis. Surg Forum 42:1–3

    Google Scholar 

  44. Ardawi MS (1988) Glutamine and glucose metabolism in human peripheral lymphocytes. Metabolism 37:99–103

    Article  PubMed  CAS  Google Scholar 

  45. Souba WW, Klimberg S, Plumley DA, et al (1990) The role of glutamine in maintaining a healthy gut and supporting the metabolic response to injury and infection. J Surg Res 48:383–391

    Article  PubMed  CAS  Google Scholar 

  46. Argov Z (1989) Phosphorus magnetic resonance spectroscopy (31P NMR) as a tool for in vivo monitoring of mitochondrial muscle disorders. In: Azzi A, Drahota Z, Papa S (eds) Molecular Basis of Membrane-Associated Disease. Springer-Verlag, Berlin, pp 183–199

    Chapter  Google Scholar 

  47. Chance B, Eleff S, Bank W, et al (1982) 31P NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle. Proc Natl Acad Sci USA 79:7714–7718

    Article  PubMed  CAS  Google Scholar 

  48. Younkin DP, Berman P, Sladky J, et al (1987) 31P NMR studies in Duchenne muscular dystrophy: Age-related metabolic changes. Neurology 37:165–169

    PubMed  CAS  Google Scholar 

  49. Shulman GI, Rothman DL, Jue T, et al (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228

    Article  PubMed  CAS  Google Scholar 

  50. Behar KL, den Hollander JA, Petroff OAC, et al (1985) Effect of hypoglycemic encephalopathy upon amino acids, high-energy phosphates, and pH, in the rat brain in vivo: Detection by sequential 1H and 31P NMR spectroscopy. J Neurochem 44:1045–1055

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacobs, D.O., Robinson, M.K. (1993). Applications of Magnetic Resonance Spectroscopy to Nutrition and Metabolism. In: Wilmore, D.W., Carpentier, Y.A. (eds) Metabolic Support of the Critically Ill Patient. Update in Intensive Care and Emergency Medicine, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85011-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85011-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85013-4

  • Online ISBN: 978-3-642-85011-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics