Skip to main content

Information Theory and Learning in Biology Summary of the Workgroup Sessions

  • Conference paper
Physics and Mathematics of the Nervous System

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 4))

  • 304 Accesses

Abstract

Naively speaking, the brain could be said to handle and store information. Thus, information theory seems a most natural tool for understanding how the brain works. However, one must not forget that, whenever one uses a certain mathematical framework as an approach to a sufficiently complex biological (or other) phenomenon, one is bound to describe and formulate only certain aspects (which are essentially predetermined by the mathematical framework chosen) of the problem of interest, and it seems, therefore, that the very general question of ‘understanding how the brain works’ is itself rather ill defined. Information theory, e.g., is certainly relevant to the problem of efficient neuronal coding of sensory inputs, but has not much to say, at least at present, about the microscopic dynamics of nerve impulse generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallager, R.G.: Information Theory and Reliable Communication, Wiley, New York, 1968 (Chapter 2).

    MATH  Google Scholar 

  2. Pfaffelhuber, E. and Güttinger, W.: Kybernetik (Informations-, Systemund Nachrichtentheorie) I,II, University of Munich Lecture Notes, 1967/68.

    Google Scholar 

  3. Barlow, H.B.: Trigger features, adaptation and economy of impulses. In: Information Processing in the Nervous System, ed. by K.N. Leibovic. Springer-Verlag, New York, 1969.

    Google Scholar 

  4. Barlow, H.B.: The coding of sensory messages. In: Current Problems in Animal Behavior, ed. by W.H. Thorpe and O.L. Zangwill. Cambridge University Press, Cambridge, 1961.

    Google Scholar 

  5. Barlow, H.B.: Redundancy and perception, this volume.

    Google Scholar 

  6. Pfaffelhuber, E.: Sensory coding and economy of nerve impulses, this volume.

    Google Scholar 

  7. Barlow, H.B.: Detection of form and pattern by retinal neurones, this volume.

    Google Scholar 

  8. Gross, C.G., Rocha-Miranda, C.E. and Bender, D.B.: Visual properties of neurons in inferotemporal cortex of Macaque, J. Neurophysiol. 35, 96 (1972).

    Google Scholar 

  9. Willshaw, D. J., Buneman, O.P. and Longuet-Higgins, H.C.: Non-holographic associative memory, Nature 222, 960 (1969).

    Article  Google Scholar 

  10. Willshaw, D.J. and Longuet-Higgins, H.C.: Associative memory models, Machine Intelligence 5, 351 (1970).

    Google Scholar 

  11. Nilsson, N.J.: Learning Machines, McGraw-Hill, New York, 1965 (Chapter 2).

    MATH  Google Scholar 

  12. Marr, D.: A theory of the cerebellar cortex, J. Physiol. 202, 437 (1969).

    Google Scholar 

  13. Albus, J.S.: A theory of cerebellar function, Math. Biosciences 1025 (1971).

    Google Scholar 

  14. Steinbuch, K.: Die Lernmatrix, Kybernetik 1, 36 (1961).

    Article  MATH  Google Scholar 

  15. Braitenberg, V.: Functional interpretation of cerebellar histology, Nature 190, 539 (1961).

    Article  MATH  Google Scholar 

  16. Braitenberg, V.: Is the cerebellar cortex a biological clock in the millisecond range?, Progress in Brain Research 25, 334 (1967).

    Article  Google Scholar 

  17. Pfaffelhuber, E.: Learning and information theory, Intern. J. Neuroscience 3 ,83 (1972), and in: Physical Principles of Neuronal and Organismic Behavior, ed. by M. Conrad and M. Magar. Gordon and Breach, New York, 1973.

    Article  Google Scholar 

  18. Heim, R.: An algorithmic approach to information theory, this volume.

    Google Scholar 

  19. Pfaffelhuber, E.: A model for learning and imprinting with finite and infinite memory range, Kybernetik 12, 229 (1973).

    Article  MATH  Google Scholar 

  20. Pfaffelhuber, E. and Damle, P.S.: Learning and imprinting in stationary and non-stationary environment, Kybernetik 13, 229 (1973).

    Article  MATH  Google Scholar 

  21. Pfaffelhuber, E.: Finite and infinite memory range learning processes in stationary and nonstationary environments, Proc. 12th IEEE Symp. Adaptive Processes, San Diego, Paper No. TA5–8 (1973).

    Google Scholar 

  22. Pfaffelhuber, E.: Mathematical learning models and neuronal networks, J. theor. Biol. 40, 63 (1973).

    Article  Google Scholar 

  23. Pfaffelhuber, E. and Damle, P.S.: Mathematical learning models and modifiable synapses, Intern. J. Neuroscience 6, 35 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Pfaffelhuber, E. (1974). Information Theory and Learning in Biology Summary of the Workgroup Sessions. In: Conrad, M., Güttinger, W., Dal Cin, M. (eds) Physics and Mathematics of the Nervous System. Lecture Notes in Biomathematics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80885-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80885-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07014-6

  • Online ISBN: 978-3-642-80885-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics