Skip to main content

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1998))

  • 189 Accesses

Abstract

The blood supply of the gut is compromised during different forms of shock to sustain the blood supply to the essential organs; the heart, brain and lung [1,2]. Even in hyperdynamic septic shock with normal to supranormal superior mesenteric artery blood flow, ischemic regions due to an inhomogenous perfusion of the microcirculation have been found [3]. Ischemia of the gut also occurs during various surgical procedures, where a temporary cessation of the intestinal blood supply is necessary, or where low flow states are used, as in cardiac and vascular surgery [4]. Ischemia of the gut has been implicated as potentially hazardous due to bacterial translocation and/or inflammatory reactions which can initiate or perpetuate sepsis leading to multiorgan failure [5–7]. The dimension and duration of this oxygen depletion determines the severity of the resulting cellular dysfunction or necrosis. A reduction of intestinal blood supply of greater than 50% has been found to induce relevant tis-sue damage [8,9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rowell LB, Detry JMR, Blackmon JR, Wyss C (1972) Importance of the splanchnic vascular bed in human blood pressure regulation. J Appl Physiol 32: 213–220

    PubMed  CAS  Google Scholar 

  2. Takala J (1996) Determinants of splanchnic blood flow. Br J Anaesth 77: 50–58

    PubMed  CAS  Google Scholar 

  3. Noeldge-Schomburg GFE, Priebe HJ, Armbruster K, Pannen B, Haberstroh J, Geiger K (1996) Different effects of early endotoxaemia on hepatic and small intestinal oxygenation in pigs. Intensive Care Med 22: 795–804

    Article  Google Scholar 

  4. Gelman S (1995) The pathophysiology of aortic cross-clamping and unclamping. Anesthesiology 82: 1026–1060

    Article  PubMed  CAS  Google Scholar 

  5. Arranow JS, Fink MP (1996) Determinants of intestinal barrier failure in critical illness. Br J Anaesth 77: 71–81

    Google Scholar 

  6. Biffl WL, Moore EE (1996) Splanchnic ischaemia/reperfusion and multiple organ failure. Br J Anaesth 77: 59–70

    PubMed  CAS  Google Scholar 

  7. Dantzker DR (1993) The gastrointestinal tract: the canary of the body? JAMA 270: 1247–1248

    Article  PubMed  CAS  Google Scholar 

  8. Haglund U (1994) Gut ischaemia. Gut 35 (suppl 1): S73–S76

    Article  PubMed  CAS  Google Scholar 

  9. Bulkley GB, Kvietys PR, Parks DA, Perry MA, Granger DN (1985) Relationship of blood flow and oxygen consumption to ischemic injury in the canine small intestine. Gastroenterology 89: 852–857

    PubMed  CAS  Google Scholar 

  10. Parks DA, Granger DN (1986) Contributions of ischemia and reperfusion to mucosal lesion for-mation. Am J Physiol 250: G749–G753

    Google Scholar 

  11. Schoenberg MH, Berger HG (1993) Reperfusion injury after intestinal ischemia. Crit Care Med 21: 1376–1386

    Article  PubMed  CAS  Google Scholar 

  12. Zimmerman BJ, Granger DN (1994) Oxygen free radicals and the gastrointestinal tract: role in ischemia-reperfusion injury. Hepato Gastroenterol 41: 337–342

    CAS  Google Scholar 

  13. Ince C, Thio S, Van Iterson M, Sinaasappel M (1996) Microvascular PO2 measured by Pd- porphine quenching of phophorescence in a porcine model of slowly developing sepsis. In: Bennett D (ed) 9th European Congress on Intensive Care Medicine, Glasgow (UK) Monduzzi, pp 133–139

    Google Scholar 

  14. Shepherd AP, Kiel JW (1992) A model of countercurrent shunting of oxygen in the intestinal villus. Am J Physiol 262: HI 136–H1142

    Google Scholar 

  15. McNeill JR, Stark RD, Greenway CV (1970) Intestinal vasoconstriction after hemorrhage: roles of vasopressin and angiotensin. Am J Physiol 219: 1342–1347

    PubMed  CAS  Google Scholar 

  16. Reilly PM, MacGowan S, Miyachi M, Schiller HJ, Vickers S, Bulkley GB (1992) Mesenteric vaso-constriction in cardiogenic shock in pigs. Gastroenterology 102: 1968–1979

    PubMed  CAS  Google Scholar 

  17. Schoenberg MH, Fredholm BB, Haglund IJ, et al (1985) Studies on the oxygen radical mechanism involved in small intestinal reperfusion damage. Acta Physiol Scand 124: 581–589

    Article  PubMed  CAS  Google Scholar 

  18. Grace PA (1994) Ischaemia-reperfusion injury. Br J Surg 81: 637–647

    Article  PubMed  CAS  Google Scholar 

  19. Fink MP (1991) Gastrointestinal mucosal injury in experimental models of shock, trauma, and sepsis. Crit Care Med 19: 627–641

    Article  PubMed  CAS  Google Scholar 

  20. Weiss SJ (1986) Oxygen, ischemia, and inflammation. Acta Physiol Scand 548 (suppl): 9–38

    CAS  Google Scholar 

  21. Maxwell SRJ (1995) Prospects for the use of antioxidant therapies. Drugs 49: 345–361

    Article  PubMed  CAS  Google Scholar 

  22. Parks DA, Williams TK, Beckman JS (1988) Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. Am J Physiol 254: G768–G774

    Google Scholar 

  23. Halliwell B, Guttridge JMC (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246: 501 - 514

    Article  PubMed  CAS  Google Scholar 

  24. Rubanyi G, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium - derived relaxing factor. Am J Physiol 252: H822 - H827

    Google Scholar 

  25. Beckman JS, Beckman TW, Chen J, Marshall PA, Fremann BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87: 1620–1624

    Article  PubMed  CAS  Google Scholar 

  26. Payne D, Kubes P (1993) Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. Am J Physiol 265: G189–G195

    Google Scholar 

  27. Parks DA, Granger DN (1983) Ischemia-induced vascular changes: role of xanthine oxidase and hydroxyl radicals. Am J Physiol 245: G285–G289

    Google Scholar 

  28. Granger DN, Kothuis RJ (1995) Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol 57: 311–332

    Article  PubMed  CAS  Google Scholar 

  29. Deitch EA, Bridges W, Ma JW, et al (1990) Hemorrhagic shock-induced bacterial translocation: the role of neutrophils and hydroxyl radicals. J Trauma 30: 942–948

    Article  PubMed  CAS  Google Scholar 

  30. Deitch EA, Bridges W, Baker J, et al (1988) Hemorrhagic shock-induced bacterial translocation is reduced by xanthine oxidase inhibition or inactivation. Surgery 104: 191–198

    PubMed  CAS  Google Scholar 

  31. Parks DA, Shah AK, Granger DN (1984) Oxygen radicals: effects on intestinal vascular permeability. Am J Physiol 247: G167–G170

    Google Scholar 

  32. Zimmerman BJ, Granger DN (1992) Reperfusion injury. Surg Clin North Am 72: 65–83

    PubMed  CAS  Google Scholar 

  33. DelMaestro RF, Bjoerk J, Arfors KE (1982) Increase in microvascular permeability induced by enzymatically generated free radicals. Microvasc Res 22: 255–270

    Article  Google Scholar 

  34. Suzuki M, Inauen W, Kvietys PR, et al (1989) Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions. Am J Physiol 257: H1740–H1745

    Google Scholar 

  35. Granger DN, Benoit JN, Suzuki M, Grisham MB (1989) Leukocyte adherence to venular endothelium during ischemia-reperfusion. Am J Physiol 257: G683–G688

    Google Scholar 

  36. Grisham MB, Hernandez LA, Granger DA (1986) Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol 251: G567–G574

    Google Scholar 

  37. Schoenberg MH, Poch B, Younes M, Schwarz A, Baczako K (1991) Involvement of neutrophils in postischemic damage to the small intestine. Gut 32: 905–912

    Article  PubMed  CAS  Google Scholar 

  38. Hernandez LA, Grisham MB, Twohig B, Arfors KE, Harlan JM, Granger DN (1987) Role of neutrophils in ischemia-reperfusion-induced microvascular injury. Am J Physiol 253: H699–H703

    Google Scholar 

  39. Welbourn CR, Goldman G, Paterson IS, Valeri CR, Shepro D, Hechtman HB (1991) Pathophysiology of ischaemia reperfusion injury: central role of the neutrophil. Br J Surg 78: 651–655

    Article  PubMed  CAS  Google Scholar 

  40. Chakraborti S, Gurtner GH, Michael JR (1989) Oxidant-mediated activation of phopholipase A2 in pulmonary endothelium. Am J Physiol 257: L430–L437

    Google Scholar 

  41. Anderson BO, Moore EE, Banerjee A (1994) Phospholipase A2 regulates critical inflammatory mediators of multiple organ failure. J Surg Res 56: 199–205

    Article  PubMed  CAS  Google Scholar 

  42. Ambrosio G, Oriente A, Napoli C, et al (1994) Oxygen radicals inhibit human plasma acetylhy- drolase, the enzyme that catabolizes platelet activating factor. J Clin Invest 93: 2408–2416

    Article  PubMed  CAS  Google Scholar 

  43. Lewis MS, Whatley RE, Cain P, Mclntyre TM, Prescott SM, Zimmerman GA (1988) Hydrogen peroxide stimulates the synthesis of platelet-activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion. J Clin Invest 82: 2045–2055

    Article  PubMed  CAS  Google Scholar 

  44. Kubes P, Ibbotson G, Russell J, Wallace JL, Granger DN (1990) Role of platelet-activating factor in reperfusion-induced leukocyte adherence. Am J Physiol 259: G300–G305

    Google Scholar 

  45. Kubes P, Suzuki M, Granger DN (1990) Platelet-activting factor-induced microvascular dys-function: role of adherent leukocytes. Am J Physiol 258: G158–G163

    Google Scholar 

  46. Filep J, Herman F, Braquet P, Mozes T (1989) Increased levels of platelet-activating factor in blood following intestinal ischemia in the dog. Biochem Biophys Res Commun 158: 353–359

    Article  PubMed  CAS  Google Scholar 

  47. Zimmerman BJ, Guillory DJ, Grisham MB, Gaginella TS, Granger DN (1990) Role of leukotriene B4 in granulocyte infiltration into the postischemic feline intestine. Gastroenterology 99: 1358–1363

    PubMed  CAS  Google Scholar 

  48. Mangino MJ, Anderson CB, Murphy MK, Brunt E, Turk J (1989) Mucosal arachidonate metabolism and intestinal ischemia-reperfusion injury. Am J Physiol 257: G299–G307

    Google Scholar 

  49. Kishimoto TK, Jutila MA, Berg EL, Butcher EC (1991) Neutrophil Mac-1 and MEL-14 adhesion proteins are inversely regulated by chemotactic factors. Science 245: 1238–1241

    Article  Google Scholar 

  50. Perry MA, Granger DN (1991) Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules. J Clin Invest 87: 1798–1804

    Article  PubMed  CAS  Google Scholar 

  51. McEver RP (1991) Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Thromb Haemost 65: 223–228

    PubMed  CAS  Google Scholar 

  52. Springer T (1990) Adhesion receptors of the immune system. Nature 346: 425–434

    Article  PubMed  CAS  Google Scholar 

  53. Kurose I, Anderson DC, Miyaska M, et al (1994) Molecular determinants of reperfusion-induced leukocyte adhesion and vascular protein leakage. Circ Res 74: 336–343

    PubMed  CAS  Google Scholar 

  54. Perry MA, Granger DN (1992) Leukocyte adhesion in local versus hemorrhage-induced ischemia. Am J Physiol 263: H810–H815

    Google Scholar 

  55. Adams DH,Nash GB (1996) Disturbance of leukocyte circulation and adhesion to the endothelium as factors in circulatory pathology. Br J Anaesth 77: 17–31

    Google Scholar 

  56. Zimmerman BJ, Holt J W, Paulson JC, et al (1994) Molecular determinants of lipid mediator-induced leukocyte adherence and emigration in rat mesenteric venules. Am J Physiol 266: H847–H853

    Google Scholar 

  57. Engler RL, Dahlgren MD, Morris DD, Peterson MA, Schmid-Schoenbein GW (1986) Role of leukocytes in response to acute myocardial ischemia and reflow in dogs. Am J Physiol 251: H314–H323

    Google Scholar 

  58. Barroso-Arranda J, Schmid-Schoenbein GW, Zweifach BW, Engler RL (1988) Granulocytes and the no-reflow phenomenon in irreversible hemorrhagic shock. Circ Res 63: 437–447

    Google Scholar 

  59. Jerome SN,Dore M, Paulson JC, Smith CW,Korthuis RJ (1994) P-selectin and ICAM-1 dependent adherence reactions: role in the genesis of postischemic capillary no-reflow. Am J Physiol 266: H1316–H1321

    Google Scholar 

  60. Carden DL, Smith JK, Korthhuis RJ (1990) Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle: role of granulocyte adherence. Circ Res 66: 1436–1444

    PubMed  CAS  Google Scholar 

  61. Nielsen VG, McCammon AT, Tan S, Kirk KA, Samuelson PN, Parks DA (1995) Xanthine oxidase inactivation attenuates postocclusion shock after descending thoracic aorta occlusion and re- perfusion in rabbits. J Thorac Cardiovasc Surg 110: 715–722

    Article  PubMed  CAS  Google Scholar 

  62. Nielsen VG, Tan S, Weinbroum A, et al (1996) Lung injury after hepatoenteric ischemia- reperfusion: role of xanthine oxidase. Am J Respir Crit Care Med 154: 1364–1369

    PubMed  CAS  Google Scholar 

  63. Nielsen VG, Tan S, Baird MS, Samuelson PN, McCammon AT, Parks DA (1997) Xanthine oxidase mediates myocardial injury after hepatoenteric ischemia-reperfusion. Crit Care Med 25: 1044–1050

    Article  PubMed  CAS  Google Scholar 

  64. Carden DL, Young JA, Granger DN (1993) Pulmonary microvascular injury following intestinal ischemia-reperfusion: role of P-selectin. J Appl Physiol 75: 2529–2534

    PubMed  CAS  Google Scholar 

  65. Koike K, Moore EE, Moore FA, Kim FJW, Carl VS, Banerjee A (1995) Gut phospholipase A2 mediates neutrophil priming and lung injury after mesenteric ischemia-reperfusion. Am J Physiol 268: G397–G403

    Google Scholar 

  66. Koike K, Moore FA, Moore EE, Read RA, Carl VS, Banerjee A (1993) Gut ischemia mediates lung injury by a xanthine oxidase-dependent neutrophil mechanism. J Surg Res 54: 469 - 473

    Article  PubMed  CAS  Google Scholar 

  67. Parks DA, Bulkley DN, Granger SR, Hamilton SR, McCord JM (1982) Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology 82: 9–15

    PubMed  CAS  Google Scholar 

  68. Granger DN, McCord JM, Parks DA, Hollwarth ME (1986) Xanthine oxidase inhibitors attenuate ischemia-induced vascular permeability changes in the cat intestine. Gastroenterology 90: 80–84

    PubMed  CAS  Google Scholar 

  69. Parks DA, Granger DN (1986) Role of oxygen radicals in gastrointestinal ischemia. In: Rotilio G (ed) Superoxide and superoxide dismutase in chemistry, biology, and medicine. Elsevier, Amsterdam, pp 614–617

    Google Scholar 

  70. Hernandez LA, Grisham MB, Granger DN (1987) A role of iron in oxidant-mediated ischemic injury to intestinal microvasculature. Am J Physiol 1987: G49–G53

    Google Scholar 

  71. Schiller HJ, Reilly PM, Bulkley GB (1993) Antioxidant therapy. Crit Care Med 21 (suppl): S92–S102

    Article  Google Scholar 

  72. Pirsino R, DiSimplicio P, Ignesti G, et al (1988) Sulfhydryl groups and peroxidase-like activity in albumin as scavenger of organic peroxides. Pharmacol Res Com 20: 545–552

    Article  Google Scholar 

  73. Freeman BA, Crapo JS (1982) Biology of disease, free radicals and tissue injury. Lab Invest 47: 412–426

    PubMed  CAS  Google Scholar 

  74. Park P-O, Gerden B, Haglund U (1994) Effects of a novel 2-aminosteroid on methylprednisolone in experimental total intestinal ischemia. Arch Surg 129: 857–860

    Article  PubMed  CAS  Google Scholar 

  75. Squadrito F, Altavilla D, Ammendolia L, et al (1995) Improved survival and reversal of endothelial dysfunction by the 21-aminosteriod,U-74389G in splanchnic ischaemia-reperfusion injury in the rat. Br J Pharmacol 115: 395–400

    PubMed  CAS  Google Scholar 

  76. Botha AJ, Moore FA, Moore EE, Peterson VM, Goode AW (1997) Base deficit after major trauma directly relates to neutrophil CD1 lb expression: a proposed mechanism of shock induced organ injury. Intensive Care Med 23: 504–509

    Article  PubMed  CAS  Google Scholar 

  77. Otamiri T, Lindahl M, Tagesson C (1988) Phospholipase A2 inhibition prevents mucosal damage associated with small intestinal ischemia in rats. Gut 29: 489–494

    Article  PubMed  CAS  Google Scholar 

  78. Carter MB, Wilson MA, Wead WB, Garrison N (1996) Platelet-activating factor mediates pulmonary macromolecular leak following intestinal ischemia-reperfusion. J Surg Res 60: 403–408

    Article  PubMed  CAS  Google Scholar 

  79. Hill J, Lindsay T, Valeri CR, Shepro D, Hechtman HB (1993) A CD18 antibody prevents lung injury but not hypotension after intestinal ischemia reperfusion. J Appl Physiol 74: 659–664

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siegemund, M., Studer, W., Ince, C. (1998). Ischemia/Reperfusion of the Gut. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1998. Yearbook of Intensive Care and Emergency Medicine, vol 1998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72038-3_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72038-3_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63798-1

  • Online ISBN: 978-3-642-72038-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics