Skip to main content

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 36))

  • 319 Accesses

Abstract

Quantitative determination of the kinetics of low- temperature oxidation or of other reactions forming thin tarnishing layers on metal surfaces is a challenge for the investigator. The total amount of gas absorbed is less than 100 monolayer equivalents of gas molecules or 1014 to 1017 atoms per cm2. This corresponds to 10-8 to l0-6g/cm2 or 10-5 to 10-3cm3 gas per cm2 at 1 bar and 300 K. Thus, the sensitivity of methods for the determination of rate and time laws should be better than 10-8g/cm2 or 10-5 Ncm3 /cm2. Only hydrogen is absorbed in larger quantities due to its high mobility in the bulk. However, this reaction is normally suppressed or impeded by the oxide scale present on the surface. Therefore, reliable data can be measured only if the surface of the metal sample is not covered by poisoning elements from the beginning to the end of an experiment. Furthermore, varying the parameters pressure and sample temperature within reasonable limits should be possible. Unfortunately, no method enables the determination of low-temperature reaction kinetics in the same ideal manner as microbalance experiments do it in the field of high-temperature oxidation. Each one of the limited number of techniques applied so far has its specific advantages but also severe shortcomings. This chapter gives a short characterization of various experimental methods and their applicability to quantitative measurements will be discussed. The techniques are subdivided into the categories: volumetry, gravimetry, optics, high energy ion beams, X-rays, and surface analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Lüth: Surfaces and Interfaces of Solid Materials 3rd edn. (Springer, Berlin, Heidelberg 1995).

    Google Scholar 

  2. S. Wagener: Brit. J. Appl. Phys. 1, 255 (1950).

    Google Scholar 

  3. E. Fromm H.G. Wulz: J. Less-common Met. 101, 469–479, (1984).

    Article  Google Scholar 

  4. H. H. Uchida H. G. Wulz E. Fromm: J. Less-common Met. 172–174, 1076–1083, (1991).

    Google Scholar 

  5. E. Fromm H.H. Uchida: J. Less-common Met. 131, 1–12, (1987).

    Article  Google Scholar 

  6. G. Z. Sauerbrey: Zeitschrift für Physik 155, 206 (1959).

    Google Scholar 

  7. C. Lu A. W. Czanderna(eds): Application of Piezoelectric Quartz Crystal Microbalances (ElsevierAmsterdam 1982).

    Google Scholar 

  8. M. Martin E. Fromm: Thin Solid Films 236, 199–203 (1993).

    Article  ADS  Google Scholar 

  9. R. M. A. Azzam N. M. Bashara: Ellipsometry and Polarized Light (North Holland, Amsterdam, 1977).

    Google Scholar 

  10. J. A. Woollam P. G. Snyder:Variable angle spectroscopic ellipsometry, in Encyclopedia of Materials Characterization, ed. by C. R. Brundle, C. A. Evans Jr., S. Wilson (Manning Publ., Greenwich, CT 1992).

    Google Scholar 

  11. J.A. Woollam J. Hale H.W. Yao: In-situ and ex-situ applications of spectroscopic ellipsometry, in Diagnostic Techniques for Semiconductor Materials Processing, ed. by O. J. Glemboeki, MRS Proc. 324, 15 (MRS Pittsbourgh, PA 1994).

    Google Scholar 

  12. E. A. Irene J. A. Woollam: In-situ Ellipsometry in Microelectronics, Materials Research Bulletin 20, 24 (1995).

    Google Scholar 

  13. J.N. Hilfiker D.W. Glenn S. Heckens J.A. Woollam: J.Appl. Phys. 79, 6193 (1996)

    Article  ADS  Google Scholar 

  14. P. G. Snyder, A. MassengaleK. Memarzadeh, J. A. WoollamD. C. IngramP. P. Pronko: Study of ion implanted copper laser mirrors by spectroscopic ellipsometry, in Beam-Solid Interactions and Transient Processes, ed. by M. O.Thomson, S. T. Picraux, J. S. Williams MRS Proc. 74, 535 (MRS, Pittsbourgh, PA 1987).

    Google Scholar 

  15. C. M. Herzinger, P. G. Snyder, F. G. Celii, Y. C. Kao, D. Chow, B. Johs, J. A. Woollam: J. Appl. Phys. 79, 2663 (1996).

    Article  ADS  Google Scholar 

  16. A. C. Boccara, C. Pickering, J. Rivory (eds.): Spectroscopic Ellipsometry, Proc. First Intern. Conf. on Spectroscopic Ellipsometry (Elsevier, Amsterdam 1993).

    Google Scholar 

  17. J. W. Mayer E. Rimini(eds.): Ion Beam Handbook for Material Analysis (Academic, New York 1977).

    Google Scholar 

  18. J. R.Tesmer, M. Nastasi (eds.): Handbook of Modern Ion Beam Materials Analysis (Materials Research Society, Pittsburgh, PA 1995).

    Google Scholar 

  19. B. K. Patnaik, C. V.BarrosLeiteG. B.BaptistaE. A.SchweikertD. L. CockeL.QuinonesN.Magnussen: Nucl. Instr. Methods B35, 159 (1988).

    Google Scholar 

  20. W.K. Chu J.W. Mayer M.A. Nicolet: Backscattering Spectrometry,(Academic,New York 1978)

    Google Scholar 

  21. Th. Enders M. Rilli H. D. Carstanjen: Nucl. Instr. Methods B64, 817 (1992).

    Article  Google Scholar 

  22. D. D. Cohen E. K. Rose: Nucl. Instr. Methods B66, 158 (1992).

    Google Scholar 

  23. G. Dollinger T. Faestermann P. Maier-Komor: Nucl. Instr. Methods B64, 422 (1992).

    Article  Google Scholar 

  24. R. Plieninger, H. D. Carstanjen: Nucl. Instr. Methods, B125, 128–132 (1997).

    Google Scholar 

  25. J. Jamecsny D. Plachke H. Carstanjen: In Proc. Int’l Conf. On Microscopy of Oxidation III, ed. by S. B.NewcombJ. A.Little (Inst. Materials, London, UK 1997) pp. 369–381.

    Google Scholar 

  26. O. Kruse H. D. Carstanjen: Nucl. Instr. Methods B89, 191 (1994).

    Article  Google Scholar 

  27. H. D. Carstanjen, W. Decker, J.DiehlTh.Enders, R.M. Emrick, A. Föhl, E. Friedland, D. Plachke, H. Stoll: Nucl. Instr. Methods B51, 152 (1990).

    Google Scholar 

  28. Th. Osipowicz K. P. Lieb S. Bmssmann: Nucl. Instr. Methods B18, 232 (1987).

    Google Scholar 

  29. T.P. Russell: Mat. Sci. Rep. 5, 171 (1990).

    Google Scholar 

  30. G. P. Felcher H. You(eds.): Proc. 4th Intern. Conf. on Surface X-ray and Neutron Scattering SXNS-4. Physica B 221 (1996).

    Google Scholar 

  31. F. Stangleier B. Lengeier W. Weber H Göbel M. Schuster: Acta Cryst. A 48, 626 (1992).

    Article  Google Scholar 

  32. A. Stierle, T. Mühge, H. Zabel: J. Mater. Res. 9, 884 (1994).

    Article  ADS  Google Scholar 

  33. A.Stierle P. Bödeker H. Zabel: Surf. Sci. 327, 9 (1995).

    Google Scholar 

  34. A. Plech U. Klemradt T.H. Metzger, J.Peisl: J. Phys: Condens. Matter 10 971–982 (1998).

    Article  ADS  Google Scholar 

  35. D. J O’Connor B. A. Sexton R. St. C. Smart(eds): Surface Analysis Methods in Materials Science, Springer Sen Surf. Sci., Vol 23 (Springer, Berlin, Heidelberg 1992).

    Google Scholar 

  36. G. A. Someijai: Introduction to Surface Chemistry and Catalysis, (Wiley, New York 1994).

    Google Scholar 

  37. M. A. VanHove, W. H. WeinbergC. M. Chan: Low-Energy Electron Diffraction, Springer Ser. Surf. Sci., Vol 6 (Springer, Berlin, Heidelberg 1986).

    Google Scholar 

  38. H. J. Giintherodt R. Wiesendanger(eds.): Scanning Tunneling Microscopy I, 2nd edn., Springer Ser. Surf. Sci., Vol 20 (Springer, Berlin, Heidelberg 1994).

    Google Scholar 

  39. R. Wiesendanger H. J. Giintherodt(eds.): Scanning Tunneling Microscopy II, 2nd edn., Springer Ser. Surf. Sci., Vol 28 (Springer, Berlin, Heidelberg 1995).

    Google Scholar 

  40. C. Bai: Scanning Tunneling Microscopy and ist Application, Springer Ser. Surf. Sci., Vol 32 (Springer, Berlin, Heidelberg 1995).

    Google Scholar 

  41. S. Hufner: Photoelectron Spectroscopy, 2nd edn., Springer Ser. Solid-State Sci., Vol. 82 (Springer, Berlin, Heidelberg 1996).

    Google Scholar 

  42. L. Reimer: Scanning Electron Microscopy, 2nd edn., Springer Ser. Opt. Sci., Vol. 45 (Springer, Berlin, Heidelberg 1998).

    Google Scholar 

  43. L. Reimer: Transmission Electron Microscopy, 4th edn., Springer Ser. Opt. Sci., Vol. 36 (Springer, Berlin, Heidelberg 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fromm, E. (1998). Experimental Techniques. In: Kinetics of Metal-Gas Interactions at Low Temperatures. Springer Series in Surface Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60311-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60311-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63975-6

  • Online ISBN: 978-3-642-60311-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics