Skip to main content

The Modulation of Melatonin in Tumor-Bearing Animals: Underlying Mechanisms and Possible Significance for Prognosis

  • Chapter
The Pineal Gland and Cancer

Abstract

Earlier clinical studies showed that circulating melatonin is depressed in patients with primary tumors of different histological types including endocrine-dependent (mammary, endometrial, prostate) as well as endocrine-independent (lung, gastric) malignancies. The depression of circulating melatonin is most pronounced in patients with advanced localized primary tumors, where a negative correlation with the size of the tumor is found. In contrast, patients with a high risk to develop breast cancer or with early stages of prostate cancer show a very pronounced secretion of melatonin. Also a considerable number of patients with ovarian cancer exhibit a high melatonin production. The underlying mechanisms involved in the modulation of circulating melatonin in cancer patients is poorly understood and therefore studies on experimental tumor-bearing animals were performed in order to better understand this phenomenon.

Most studies have been carried out in relation to breast cancer using 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary cancers as well as serial transplants derived thereof. These experiments demonstrate that nocturnal circulating melatonin is modulated due to the presence of different types and stages of these experimental tumors, as has been observed for the respective human tumors underlining the relevance of these studies. Rats with chemically induced mammary tumors and slow-growing as well as well-differentiated serial transplants containing epithelial cell elements (adenocarcinomas and carcinosarcomas) have an enhanced production of melatonin involving activation of the rate-limiting enzyme of pineal melatonin biosynthesis (serotonin-N-acetyltransferase). This is probably due to an elevation of the sympathetic tone in response to a stimulation of the cellular immune system during malignant growth. In contrast, nocturnal circulating melatonin is depleted in animals with fast-growing mammary tumor transplants when myoepithelial-mesenchymal conversion leads to pure sarcomas. The depletion of melatonin appears to be due to either a reduced availability of the precursor amino acid tryptophan because of a glucocorticoid-induced activation of the hepatic enzyme tryptophan 2,3-dioxygenase or a direct peripheral degradation of melatonin via indolamine 2,3-dioxygenase expressed in tumor and/or other tissues. The significance of these findings is discussed in terms of a possible extrapolation to the clinical situation as well as to increase our theoretical knowledge concerning the mechanisms involved in complex host-tumor interactions within the framework of the neuroimmunoendocrine network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • el Abed A, Kerdelhue B, Castanier M, Scholler R (1987) Stimulation of estradiol-17β secretion by 7,12-dimethylbenz(a)anthracene during mammary tumor induction in Sprague-Dawley rats. J Steroid Biochem 26: 733–738

    Article  PubMed  Google Scholar 

  • Aldhous ME, Arendt J (1988) Radioimmunoassay for 6-sulphatoxymelatonin in urine using an iodinated tracer. Ann Clin Biochem 25:298–303

    PubMed  CAS  Google Scholar 

  • Anisimov VN, Popovich IG, Zabezhinski MA (1997) Melatonin and colon carcinogenesis: I. Inhibitory effect of melatonin on development of intestinal tumors induced by 1,2-dimethylhydrazine in rats. Carcinogenesis 18: 1549–1553

    Article  PubMed  CAS  Google Scholar 

  • Anisimov VN, Kvetnoy IM, Chumakova NK, Kvetnaya TV, Molotkov AO, Pogudina NA, Popovich IG, Popuchiev VV, Zabezhinski MA, Bartsch H, Bartsch C (1999) Melatonin and colon carcinogenesis. II. Intestinal melatonin-containing cells and serum melatonin level in rats with 1,2-dimethylhydrazine-induced colon tumors. Exp Toxic Pathol 51: 47–52

    CAS  Google Scholar 

  • Antonia SJ, Extermann M, Flavell RA (1998) Immunologic nonresponsiveness to tumors. Crit Rev Oncog 9: 35–41

    PubMed  CAS  Google Scholar 

  • Bartsch C (1988) Untersuchungen zur Funktion der Zirbeldrüse und ihrer Beziehung zum endokrinen System im Brust- und Prostatacarcinom: tierexperimentelle und humanbiologische Untersuchungen. Ph.D. Thesis at the Faculty of Chemistry and Pharmacy, University of Tübingen, Tübingen.

    Google Scholar 

  • Bartsch C, Bartsch H, Fuchs U, Lippert TH, Bellmann O, Gupta D (1989) Stage-dependent depression of melatonin in patients with primary breast cancer. Correlation with prolactin, thyroid stimulating hormone, and steroid receptors. Cancer 64: 426–433

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Lippert TH, Gupta D (1990) Effect of the mammary carcinogen 7,12-dimethylbenz[a]anthracene on pineal melatonin biosynthesis, secretion and peripheral metabolism. Neuroendocrinology 52: 538–544

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Gupta D ( 1990 a) Pineal melatonin synthesis and secretion during induction and growth of mammary cancer in female rats. In: Neuroendocrinology: New Frontiers, Gupta D, Wollmann HA, Ranke MB, eds., Brain Research Promotion, London and Tübingen, pp 326–332

    Google Scholar 

  • Bartsch C, Bartsch H, Bellmann O, Lippert TH (1991) Depression of serum melatonin in patients with primary breast cancer is not due to an increased peripheral metabolism. Cancer 67: 1681–1684

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Schmidt A, Ilg S, Bichler KH, Flüchter SH (1992) Melatonin and 6-sulfatoxymelatonin circadian rhythms in serum and urine of primary prostate cancer patients: evidence for reduced pineal activity and relevance of urinary determinations. Clin Chim Acta 209: 153–167

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Flüchter SH, Mecke D, Lippert TH (1994) Diminished pineal function coincides with disturbed circadian endocrine rhythmicity in untreated primary cancer patients. Consequence of premature aging or of tumor growth? Ann N Y Acad Sci 719: 502–525

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Buchberger A, Rokos H, Mecke D, Lippert TH (1995) Serial transplants of DMBA-induced mammary tumors in Fischer rats as model system for human breast cancer. IV. Parallel changes of biopterin and melatonin indicate interactions between the pineal gland and cellular immunity in malignancy. Oncology 52: 278–283

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Kvetnoy I, Kvetnaia T, Bartsch H, Molotkov A, Franz H, Raikhlin N, Mecke D (1997) Nocturnal urinary 6-sulfatoxymelatonin and proliferating cell nuclear antigen-immunopositive tumor cells show strong positive correlations in patients with gastrointestinal and lung cancer. J Pineal Res 23: 90–96

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Bichler K-H, Flüchter S-H (1998) Prostate cancer and tumor stage-dependent circadian neuroendocrine disturbances. Aging Male 1: 188–199

    Article  Google Scholar 

  • Bartsch C, Bartsch H, Buchberger A, Stieglitz A, Effenberger-Klein A, Kruse-Jarres JD, Besenthal I, Rokos H, Mecke D (1999) Serial transplants of DMBA-induced mammary tumors in Fischer rats as a model system for human breast cancer. VI. The role of different forms of tumor-associated stress for the regulation of pineal melatonin secretion, Oncology 56: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Bartsch C, Szadowska A, Karasek M., Bartsch H, Geppert M, Mecke D (2000) Serial transplants of DMBA-induced mammary tumors in Fischer rats as model system for human breast cancer. V. Myoepithelial-mesenchymal conversion during passaging as possible cause for modulation of pineal-tumor interaction. Exp Toxic Pathol 52: 93–101

    CAS  Google Scholar 

  • Bartsch H, Bartsch C, Mecke D, Lippert TH (1993) The relationship between the pineal gland and cancer: seasonal aspects. In: Light and Biological Rhythms in Man, Wetterberg L ed, Pergamon Press, Oxford, pp 337–347

    Google Scholar 

  • Bartsch H, Bartsch C, Mecke D, Lippert TH (1994) Seasonality of pineal melatonin production in the rat: possible synchronization by the geomagnetic field. Chronobiol Int 11:21–26

    Article  PubMed  CAS  Google Scholar 

  • Bartsch H, Bartsch C, Mecke D, Lippert TH (1994a) Differential effect of melatonin on early and advanced passages of a DMBA-induced mammary carcinoma in the female rat. In: Advances in Pineal Research, Vol.7, Maestroni GJM, Conti A, Reiter RJ, eds., John Libbey, London, pp 247–252

    Google Scholar 

  • Besedovsky HO, del Rey A, Schardt M, Sorkin E, Normann S, Baumann J, Girard J (1985) Changes in plasma hormone profiles after tumor transplantation into syngeneic and allogeneic rats. Int J Cancer 36: 209–216

    Article  PubMed  CAS  Google Scholar 

  • Birchmeier C, Birchmeier W, Brand-Saberi B (1996) Epithelial-mesenchymal transitions in cancer progression. Acta Anat (Basel) 156:217–226

    Article  PubMed  CAS  Google Scholar 

  • Blask DE (1987) Neuroendocrine aspects of neoplastic growth: a review. Neuroendocrinol Lett 9: 63–73

    CAS  Google Scholar 

  • Burenin IS, Piskareva NK (1984) Plasma hormone levels in rats with DMBA-induced mammary tumors (in Russian) Eksp Onkol 6:24–27

    PubMed  CAS  Google Scholar 

  • Chen HJ, Bradley CJ, Meites J (1977) Stimulation of growth of carcinogen-induced mammary cancers in rats by thyrotropin-releasing hormone. Cancer Res 37: 64–66

    PubMed  CAS  Google Scholar 

  • Chiba A, Akema T, Toyoda J (1994) Effects of pinealectomy and melatonin on the timing of the proestrous luteinizing hormone surge in the rat. Neuroendocrinology 59:163–168

    Article  PubMed  CAS  Google Scholar 

  • Christou M, Savas U, Schroeder S, Shen X, Thompson T, Gould MN, Jefcoate CR (1995) Cytochromes CYP1 Al and CYP1B1 in the rat mammary gland: cell-specific expression and regulation by polycyclic aromatic hydrocarbons and hormones. Mol Cell Endocrinol 115: 41–50

    Article  PubMed  CAS  Google Scholar 

  • DiGiovanni J, Juchau MR (1980) Biotransformation and bioactivation of 7, 12-dimethyl-benz[a]anthracene (7,12-DMBA). Drug Metab Rev 1:61–101

    Google Scholar 

  • Esquifino A, Agrasal C, Velazquez E, Villanua MA, Cardinali DP (1997) Effect of melatonin on serum cholesterol and phospholipid levels, and on prolactin, thyroid-stimulating hormone and thyroid hormone levels, in hyperprolactinemic rats. Life Sci 61: 1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Evans J J, Janmohamed S, Forsling ML (1999) Gonadotrophin-releasing hormone and oxytocin secretion from the hypothalamus in vitro during pro-oestrus: the effects of time of day and melatonin. Brain Res Bull 48: 93–97

    Article  PubMed  CAS  Google Scholar 

  • Feigelson P and Greengard O (1962) Immunochemical evidence for increased titers of liver pyrrolase during substrate and hormonal enzyme induction. J Biol Chem 237: 3714–3717

    CAS  Google Scholar 

  • Guarino M (1995) Epithelial-to-mesenchymal change of differentiation. From embryogenetic mechanism to pathological patterns. Histol Histopathol 10:171–184

    PubMed  CAS  Google Scholar 

  • Goodman AD, Hoekstra SJ, Marsh PS (1980) Effects of hypothyroidism on the induction and growth of mammary cancer induced by 7,12-dimethylbenz(a)anthracene in the rat. Cancer Res 40: 2336–2342

    PubMed  CAS  Google Scholar 

  • Goustin AS, Leof EB, Shipley GD, Moses HL (1986) Growth factors and cancer. Cancer Res 46: 1015–1029

    PubMed  CAS  Google Scholar 

  • Hallberg E (1990) Metabolism and toxicity of xenobiotics in the adrenal cortex, with particular reference to 7,12-dimethylbenz(a)anthracene. J Biochem Toxicol 5:71–90

    Article  PubMed  CAS  Google Scholar 

  • Huggins C, Briziarelli G, Sutton H (1959) Rapid induction of mammary carcinoma in the rat and the influence of hormones on the tumor. J Exp Med 109:25–42

    Article  PubMed  CAS  Google Scholar 

  • Karasek M, Marek K, Zielinska A, Swietoslawski J, Bartsch H, Bartsch C (1994) Serial transplants of 7,12-dimethylbenz[a]anthracene-induced mammary tumors in Fischer rats as model system for human breast cancer. 3. Quantitative ultrastructural studies of the pinealocytes and plasma melatonin concentrations in rats bearing an advanced passage of the tumor. Biol Signals 3: 302–306

    Article  PubMed  CAS  Google Scholar 

  • Kerdelhue B, Peck EJ Jr (1981) In vitro LHRH release: correlation with the LH surge and alteration by a mammary carcinogen. Peptides 2: 219–222

    Article  PubMed  CAS  Google Scholar 

  • Kerdelhue B, El Abed A (1979) Inhibition of preovulatory gonadotropin secretion and stimulation of prolactin secretion by 7,12-dimethylbenz(a)anthracene in Sprague-Dawley rats. Cancer Res 39: 4700–4705

    PubMed  CAS  Google Scholar 

  • Kothari L, Subramanian A (1992) A possible modulatory influence of melatonin on representative phase I and II drug metabolizing enzymes in 9,10-dimethyl-l,2-benzanthracene induced rat mammary tumorigenesis. Anticancer Drugs 3: 623–628

    Article  PubMed  CAS  Google Scholar 

  • Klein DC (1985) Photoneural regulation of the mammalian pineal gland. In: Photoperiodism, melatonin, and the pineal. Ciba Foundation Symposium 117. Evered D and Clark S eds., Pitman, London, pp 38 - 51

    Google Scholar 

  • Kloen P, Gebhardt MC, Perez-Atayde A, Rosenberg AE, Springfield DS, Gold LI, Mankin HJ (1997) Expression of transforming growth factor-beta (TGF-beta) isoforms in osteosarcomas: TGF-beta3 is related to disease progression. Cancer 80: 2230–2239

    Article  PubMed  CAS  Google Scholar 

  • Lapin V (1974) Influence of simultaneous pinealectomy and thymectomy on the growth and the influence of hormones on the tumor. J Exp Med 109:25–42

    Google Scholar 

  • Lapin V and Frowein A (1981) Effects of growing tumours on pineal melatonin levels in male rats. J Neural Transm 52: 123–136

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Lapin V, Oyasu R., Battifora H (1981) Effect of ovariectomy on serially transplanted rat mammary tumors induced by 7,12-dimethylbenz(a)anthracene. Eur J Cancer Clin Oncol 17: 801–808

    Article  PubMed  CAS  Google Scholar 

  • Leone AM, Skene D (1994) Melatonin concentrations in pineal organ culture are suppressed by sera from tumor-bearing mice. J Pineal Res 17: 17–19

    Article  PubMed  CAS  Google Scholar 

  • Maestroni GJ (1993) The immunoneuroendocrine role of melatonin. J Pineal Res 14: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Maestroni GJ, Conti A (1996) Melatonin in human breast cancer tissue: association with nuclear grade and estrogen receptor status. Lab Invest 75: 557–561

    PubMed  CAS  Google Scholar 

  • Masamura S, Santner SJ, Gimotty P, George J, Santen R (1997) Mechanism for maintenance of high breast tumor estradiol concentrations in the absence of ovarian function: role of very high affinity tissue uptake. Breast Cancer Res Treat 42: 215–226

    Article  PubMed  CAS  Google Scholar 

  • Masamura S, Santner SJ, Santen RJ (1996) Evidence of in situ estrogen synthesis in nitrosomethyl-urea-induced rat mammary tumors via the enzyme estrone sulfatase. J Steroid Biochem Mol Biol 58: 425–429

    Article  PubMed  CAS  Google Scholar 

  • Meites J (1980) Relation of the neuroendocrine system to the development and growth of experimental mammary tumors. J Neural Transm 48: 25–42

    Article  PubMed  CAS  Google Scholar 

  • Moore CJ, Tricomi WA, Gould MN (1988) Comparison of 7,12-dimethylbenz[a]anthracene metabolism and DNA binding in mammary epithelial cells from three rat strains with differing susceptibilities to mammary carcinogenesis. Carcinogenesis 9: 2099–2102

    Article  PubMed  CAS  Google Scholar 

  • Musatov SA, Anisimov VN, Andre V, Vigreux C, Godard T, Sichel F (1999) Effects of melatonin on N-nitroso-N-methylurea-induced carcinogenesis in rats and mutagenesis in vitro (Ames test and COMET assay). Cancer Lett 138: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Olcese J, Reuss S, Semm P (1988) Geomagnetic field detection in rodents. Life Sci 42: 605–613

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini C, Sarrieau A, Dussaillant M, Corbani M, Bojda-Diolez F, Rostene W, Kerdelhue B (1990) Estrogen-like effects of 7,12-dimethylbenz(a)anthracene on the female rat hypothalamo-pituitary axis. J Steroid Biochem 36: 485–491

    Article  PubMed  CAS  Google Scholar 

  • Praast G, Bartsch C, Bartsch H, Mecke D, Lippert TH (1995) Hepatic hydroxylation of melatonin in the rat is induced by phenobarbital and 7,12-dimethylbenz[a]anthracene-implications for cancer etiology. Experientia 51: 349–355

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX, Cabrera J, D’Arpa D, Sainz RM, Mayo JC, Ramos S (1999) The oxidant/antioxidant network: role of melatonin. Biol Signals Recept 8: 56–63

    Article  PubMed  CAS  Google Scholar 

  • Schmidt U (1996) Untersuchungen zum Einfluβ des Tumorwachstums auf die Melatoninsekretion der Rattenzirbeldrüse. Ph. D.Thesis at the Faculty of Chemistry and Pharmacy, University of Tübingen, Tübingen

    Google Scholar 

  • Schmidt U, Bartsch C, Bartsch H, Mecke D (1997) Pineal melatonin secretion seems to be reversibly inhibited by a tumor-derived melatonin inhibiting factor (abstract). Cancer Biotherapy 12: 429

    Google Scholar 

  • Shah PN, Mhatre MC, Kothari LS (1984) Effect of melatonin on mammary carcinogenesis in intact and pinealectomized rats in varying photoperiods. Cancer Res 44: 3403–3407

    PubMed  CAS  Google Scholar 

  • Shou M, Gonzalez FJ, Gelboin HV (1996) Stereoselective epoxidation and hydration at the K-region of polycyclic aromatic hydrocarbons by cDNA-expressed cytochromes P450 1A1, 1A2, and epoxide hydrolase. Biochemistry 35: 15807–15813

    Article  PubMed  CAS  Google Scholar 

  • Subramanian A, Kothari L (1991) Suppressive effect by melatonin on different phases of 9,10-dimethyl-l,2-benzanthracene (DMBA)-induced rat mammary gland carcinogenesis. Anticancer Drugs 2: 297–303

    Article  PubMed  CAS  Google Scholar 

  • Tamarkin L, Cohen M, Roselle D, Reichert C, Lippman M, Chabner B. (1981) Melatonin inhibition and pinealectomy enhancement of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the rat. Cancer Res 41: 4432–4436

    PubMed  CAS  Google Scholar 

  • Tejwani GA, Gudehithlu KP, Hanissian SH, Gienapp IE, Whitacre CC, Malarkey WB (1991) Facilitation of dimethylbenz[a]anthracene-induced rat mammary tumorigenesis by restraint stress: role of beta-endorphin, prolactin and naltrexone. Carcinogenesis 12: 637–641

    Article  PubMed  CAS  Google Scholar 

  • Vaswani KK,Tejwani GA, Abou-Issa HM (1986) Effect of 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis on the opioid peptide levels in the rat central nervous system. Cancer Lett 31: 115–122

    Article  PubMed  CAS  Google Scholar 

  • Vorherr H (1987) Endocrinology of breast cancer. Maturitas 9: 113–122

    Article  PubMed  CAS  Google Scholar 

  • Welsch CW (1985) Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res 45: 3415–3443

    PubMed  CAS  Google Scholar 

  • Yoshida R and Hayaishi O (1984) Overview superoxygenase. Methods Enzymol 106: 61–70

    Article  Google Scholar 

  • Zimmermann RC, McDougle CJ, Schumacher M, Olcese J, Mason JW, Heninger GR, Price LH (1993) Effects of acute tryptophan depletion on nocturnal melatonin secretion in humans. J Clin Endocrinol Metab 76: 1160–1164

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bartsch, H., Bartsch, C., Mecke, D. (2001). The Modulation of Melatonin in Tumor-Bearing Animals: Underlying Mechanisms and Possible Significance for Prognosis. In: Bartsch, C., Bartsch, H., Blask, D.E., Cardinali, D.P., Hrushesky, W.J.M., Mecke, D. (eds) The Pineal Gland and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59512-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59512-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64003-2

  • Online ISBN: 978-3-642-59512-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics