Skip to main content

In-vivo Optical Imaging of Cortical Architecture and Dynamics

  • Chapter
Modern Techniques in Neuroscience Research

Abstract

A number of new imaging techniques are available to scientists to visualize the functioning brain directly, revealing unprecedented details. These imaging techniques have provided a new level of understanding of the principles underlying cortical development, organization and function. In this chapter we will focus on optical imaging in the living mammalian brain, using two complementary imaging techniques. The first technique is based on intrinsic signals. The second technique is based on voltage-sensitive dyes. Currently, these two optical imaging techniques offer the best spatial and temporal resolution, but also have inherent limitations. We shall provide a few examples of new findings obtained mostly in work done in our laboratory. The focus will be upon the understanding of methodological aspects which in turn should contribute to optimal use of these imaging techniques. General reviews describing earlier work done on simpler preparations have been published elsewhere (Cohen, 1973; Tasaki and Warashina, 1976; Waggoner and Grinvald, 1977; Waggoner, 1979; Salzberg, 1983; Grinvald, 1984; Grinvald et al., 1985; De Weer and Salzberg, 1986; Cohen and Lesher, 1986; Salzberg et al., 1986; Loew, 1987; Orbach, 1987; Blasdel, 1988, 1989; Grinvald et al., 1988; Kamino, 1991; Cinelli and Kauer, 1992; Frostig, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arieli, A., Shoham, D., Hildesheim, R. and Grinvald., A. (1995). Coherent spatio-temporal pattern of on-going activity revealed by real time optical imaging coupled with single unit recording in the cat visual cortex. J. Neurophysiol., 73, 2072–2093

    PubMed  CAS  Google Scholar 

  • Arieli, A., Sterkin, A., Grinvald, A., and Aertsen, A. (1996). Dynamics of on-going activity: Expla-nation of the large in variability in evoked cortical responses. Science, 273, 1868–1871.

    Article  PubMed  CAS  Google Scholar 

  • Arieli, A., et al., (1996). The impact of on going cortical activity on evoked potential and behavio-ral responses in the awake behaving monkey. NS abstract.

    Google Scholar 

  • Bakin, J.S., Kwon, M.C., Masino, S.A., Weinberger, N.M., Frostig, R.D. (1993). Tonotopic organization of guinea pig auditory cortex demonstrated by intrinsic signal optical imaging through the skull, Neurosci. Abstr., 582 (11).

    Google Scholar 

  • Bartfeld, E., and Grinvald, A. (1992). Relationships between orientation preference pinwheels, cytochrome oxidase blobs and ocular dominance columns in primate striate cortex. Proc. Natl. Acad. Sci. USA 89, 11905–11909.

    Article  PubMed  CAS  Google Scholar 

  • Beeler, T.J., Farmen, R.H., and Martonosi, A.N. (1981). The mechanism of voltage-sensitive dye responses on saroplasmic reticulum. J. Member. Biol. 62: 113–137.

    Article  CAS  Google Scholar 

  • Blasdel GG (1989). Visualization of neuronal activity in monkey striate cortex. Annu Rev Physiol 51: 561–581.

    Article  PubMed  CAS  Google Scholar 

  • Blasdel GG., Salama G. (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321: 579–585.

    Article  PubMed  CAS  Google Scholar 

  • Blasdel, G. G. (1988). in: “Sensory Processing in the mammalian brain: Neural substrates 0000 Experimental strategies”. Ed., Lund, J.S. Oxford Univ. Press pp 242–268.

    Google Scholar 

  • Blasdel, G.G. (1989). Topography of visual function as shown with voltage sensitive dyes. In: Sensory systems in the mammalian brain, J.S. Lund, ed., pp. 242–268, Oxford University Press, New York.

    Google Scholar 

  • Blasdel, G.G. (1992a). Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex, J. Neurosci., 12, 3115–3138.

    PubMed  CAS  Google Scholar 

  • Blasdel, G.G. (1992b). Orientation selectivity, preference, and continuity in monkey striate cortex, J. Neurosci., 12, 3139–3161.

    PubMed  CAS  Google Scholar 

  • Bonhoeffer, T., and Grinvald, A. (1991). Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns, Nature, 353, 429–431.

    Article  PubMed  CAS  Google Scholar 

  • Bonhoeffer, T., and Grinvald, A. (1993). The layout of Iso-orientation domains in area 18 of cat vis- ual cortex: Optical Imaging reveals pinwheel-like organization, J. Neurosci., 13, 4157–4180.

    PubMed  CAS  Google Scholar 

  • Bonhoeffer, T., and Grinvald, A. (1996). Optical Imaging based on Intrinsic Signals. The Methodology. in Brain Mapping. The Methods. A. Toga and J. Mazziotta (eds ). Academic Press.

    Google Scholar 

  • Bonhoeffer, T., Goedecke, I. (1994). Kittens with alternating monocular experience from birth develop identical cortical orientation preference maps for left and right eye, Soc. Neurosci. Abstr., 20, 98 (3), 215.

    Google Scholar 

  • Bonhoeffer, T., Kim, A., Malonek, D., Shoham, D., and Grinvald, A. (1995). The functional architecture of cat area 17. Eur. J. Neurosci., 7, 1973–1988.

    Article  CAS  Google Scholar 

  • Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J-Neurosci. Mar 15, 17 (6), 2112–27.

    CAS  Google Scholar 

  • Bullen, A.,and Saggau, P. (1998). Indicators and optical configuration for simultaneous high resolution recording of membrane potential and intracellular calcium using laser scanning microscopy. Pflugers archiv european journal of physiology. 436, 788–796.

    Article  Google Scholar 

  • Cannestra, AR, Black, KL., Martin. NA., Cloughesy, T., Burton, JS., Rubinstein, E., woods, RP.,and Toga, AW. (1998). Topographical and temporal specificity of humann intraoperative optical intrinsic signals. Neurosci., 9, 2557–2563.

    CAS  Google Scholar 

  • Cacciatore, TW., Brodfuehrer, PD.,, Gozalas JE Tsien, RY, Kristan, WB and Kleinfeld D. (1998). Neurons that are active in phase with swimming in leech, and their connectivity are revealed by optical techniques. Neurosci. Abs. 24, 1890.

    Google Scholar 

  • Chance, B., Cohen, P., Jobsis, F., Schoener, B. (1962). Intracellular oxidation-reduction states in vivo. Science, 137, 499–508.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Kang, K., He, L., Weng, J., Sevick, E. (1993b). Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions, PNAS 90 (8), 3423–3427.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Zhuang, L., Unah, C., Alter, C., Lipton, L. (1993a). Cognition-activated low-frequency modulation of light absorption in human brain, PNAS 90 (8), 3770–3774.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, B., and Bonhoeffer, T. (1998). Overrepresentation of horizontal and vertical orientation preference in developing ferret area-17. Proceedings of the national academy of science of the United States of America, 95, 2609–2614.

    Article  CAS  Google Scholar 

  • Chapman, B., Bonhoeffer, T. (1994). Chronic optical imaging of the development of orientation domains in ferret area 17, Soc. Neurosci. Abstr., 20, 98 (2), 214.

    Google Scholar 

  • Cinelli, A.R., and Kauer, J.S. (1992). Voltage sensitive dyes and functional-activity in the olfactory pathway. Annu. Rev. Neurosci., 15, 321–352.

    Article  PubMed  CAS  Google Scholar 

  • Cinelli, A.R., and Kauer, J.S. (1995) Salamender olfactory-bulb neuronal-activity observed by video-rate, voltage sensitive dyes imaging. 2. Spatial and temporal properties of responses evoked by electrical stimulation. J. Neurophys., 73, 2033–2052.

    CAS  Google Scholar 

  • Cinelli, A.R., Neff, S.R., and Kauer, J.S. (1995) Salamender olfactory-bulb neuronal-activity observed by video-rate, voltage sensitive dyes imaging. 1. Caracterization of the recording system. J. Neurophys., 73, 2017–2032.

    CAS  Google Scholar 

  • Cohen, L. B., Salzberg, B. M., Davila, H. V., Ross, W. N., Landowne, D., Waggoner, A. S., and Wang, C. H. (1974). Changes in axon fluorescenceduring activity: Molecular probes of membrane potential. J. Membrane Biol. 19: 1–36.

    Article  CAS  Google Scholar 

  • Cohen, L.B. (1973). Changes in neuron structure during action potential propagation and synaptic transmission, Physiol. Rev., 53, 373–418.

    PubMed  CAS  Google Scholar 

  • Cohen, L.B., and Lesher, S. (1986). Optical monitoring of membrane pkential: methods of multisite optical measurement. Soc. Gen. Physiol., Ser. 40: 71–99

    CAS  Google Scholar 

  • Cohen, L.B., and Orbach, H.S. (1983). Simultaneous monitoring of activity of many neurons in buccal ganglia of pleurobranchaea and aplysia. Soc. Neurosci.Abstr. 9: 913.

    Google Scholar 

  • Cohen, L.B., Keynes, R.D., Hille, B. (1968). Light scattering and birefringence changes during nerve activity, Nature, 218, 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, L.B., Landowne, D., Shrivastav, B.B., and Ritchie, J.M., (1970). Changes in fluorescence of squid axons during activity. Biol. Bull. Woods Hole 139: 418–419.

    Google Scholar 

  • Cohen, L.B., Slazberg, B.M., Grinvald, A. (1978) Optical methods for monitoring neurons activity. Ann. Rev. of Neurosci., 1, 171–182.

    Article  CAS  Google Scholar 

  • Coppola, DM., White,LE., Fitzpatrick, D., and Purves, D. (1998). Unequal representation of cardinal and oblique in ferret cortex. Proceedings of the national academy of science of the United States of America, 95, 2621–2623.

    CAS  Google Scholar 

  • Crair, M.C., Gillespie, D.G., and Stryker, M.P. (1998) The role of visual experience in the development of columns in cat visual cortex. Science, 279, 566–570

    Article  PubMed  CAS  Google Scholar 

  • Crair, M.C., Ruthazer, E.S., Gillespie, D.C. (1997). Stryker-MP Ocular, dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J-Neurophysiol., Jun, 77 (6)

    Google Scholar 

  • Crair, M.C., Ruthazer, E.S., Gillespie, D.C. (1997). Stryker-MP Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats. Neuron. Aug, 19 (2), 307–18

    Article  CAS  Google Scholar 

  • Das, A., and Gilbert, C.D. (1995). Long-range horizontal connections and their role in cortical reor-ganization revealed by optical recording of cat primary visual cortex Nature, 375 (6534), 780–4.

    CAS  Google Scholar 

  • Das, A., and Gilbert, C.D. (1997). Distortions ofvisuotopic map match orientation singularities inprimary visual cortex. Nature, 387, 594–8

    Article  PubMed  CAS  Google Scholar 

  • Davila, H.V., Cohen, L.B., Salzberg, B.M., and Shrivastav, B.B., (1974). Changes in ANS and TNS fluorescence in giant axons from loligo. J. Member. Bio1. 15: 29–46.

    Article  CAS  Google Scholar 

  • De Weer, P. and B.M. Salzberg (eds) (1986). Optical methods in cell physiology., Soc. Gen. Physiol. Ser. Vol. 40 John Wiley and Sons inc. New York.

    Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W. (1990) Two-photon laser scanning fluorescence microscopy. Science, 248: 73–76

    Article  PubMed  CAS  Google Scholar 

  • Egger, M.D., and M. Petran. (1967). New reflected light microscope for viewing unstained brain and ganglion cells. Science, 157: 305–307.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg, B., and Berezin, Y. (1984). Surface potential on purple membranes and its sidedness studied by resonance ramam dye prob. Biophys. J. 45: 663–670.

    Article  PubMed  CAS  Google Scholar 

  • Eisenbach, M., Margolon, Y., Ciobotariu, A., and Rottenberg, H. (1984). Distinction between changes in membrane potential and surface charge upon chemotactic stirr ulation of escherichia coli. Biophys. J. 45: 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Everson, R.M., Prashanth, A.K., Gabbay, M., Knight, B.W., Sirovich, L., Kaplan, E. (1998). Repre-sentation of spatial frequency and orientation in the visual cortex. PNAS 95 (14), 8334–8338.

    Article  PubMed  CAS  Google Scholar 

  • Fox, P.T., Mintun, M.A., Raichle, M.E., Miezin, F.M., Allman, J.M., aiâd van Essen, D.C. (1986). Mapping human visual cortex with positron emission tomography. Nature, 323, 806–809.

    Article  PubMed  CAS  Google Scholar 

  • Frostig, R.D. (1994). What does in vivi optical imaging tell us about the primary visual cortex in primates. In Cerebral Cortex, 10, 331–358, Eds. Peters A, and Rockland K.

    Google Scholar 

  • Frostig, R.D., Lieke, E.E., Ts’o, D.Y., and Grinvald, A. (1990). Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. USA 87, 6082–6086.

    Article  PubMed  CAS  Google Scholar 

  • Frostig, R.D., Masino, S.A., Kwon, M.C. (1994). Characterization of functional whisker representation in rat barrel cortex: Optical imaging of intrinsic signals vs. single-unit recordings, Neurosci. Abstr., 566 (8).

    Google Scholar 

  • Ghose, G.M., Roe, A.W., Ts’o, D.Y. (1994). Features of functional organization within primate V4, Neurosci. Abstr., 350 (10).

    Google Scholar 

  • Gilbert, C.D., Wiesel, T.N. (1983) Clustered intrinsic connections in cet visual cortex.J Neurosci 3: 1116–1133.

    CAS  Google Scholar 

  • Glaser, D.E., Hildesheim, R., Shoham, D., and Grinvald, A. (1988). Optical imaging with new voltage sensitive dues reveals that sudden luminance changes delay the onset of orientation tuning in cat visual cortex. Neurosci. Abs., 24: 10. 3

    Google Scholar 

  • Glaser,D.E., Shoham,D.,and Grinvald,A. (1998). Sudden luminance changes delay the onset of cortical shape processing. Neurosci.Lett.,Suppl 51(S15).

    Google Scholar 

  • Gochin, P.M., Bedenbaugh, P., Gelfand, J.J., Gross, C.G., Gerstein, G.L. (1992). Intrinsic signal op-tical imaging in the forepaw area of rat somatosensory cortex, PNAS 89 (17), 8381–8383.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, JE. and Tsien, RY (1995). Voltage Sensing by fluorescence resonance energy transfer in single cells. Biophys. J. 69: 1272–1280.

    CAS  Google Scholar 

  • Gonzalez, JE. and Tsien, RY (1997). Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. Chem. Biol. 4: 269–277.

    Article  PubMed  CAS  Google Scholar 

  • Gratton, G. (1997). Attention and probability effects in the human occipital cortex: an optical imaging study. Neuroreport, 8 (7), 1749–53

    Article  PubMed  CAS  Google Scholar 

  • Gratton, G., Corballis, P.M., Cho, E., Fabiani, M., Hood, D.C. (1995). Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation. Psychophysiology, 32 (5), 505–9

    CAS  Google Scholar 

  • Gratton, G., Fabiani, M., Corballis, PM., Gratton, E. (1997). Noninvasive detection of fast signals from the cortex using frequency-domain optical methods. Ann-N-Y-Acad-Sci., 820, 286–98

    Article  PubMed  CAS  Google Scholar 

  • Grinvald,A, Fine, A., Farber, I.C., Hildesheim, R. (1983) Fluorescence monitoring of electrical re-sponses from small neurons and their processes. Biophys. J. 42: 195–198.

    Article  Google Scholar 

  • Grinvald, A. (1984). Real time optical imaging of neuronal activity: from single growth cones to the intact brain. Trends in Neurosci., 7, 143–150.

    Google Scholar 

  • Grinvald, A. (1985). Real-time optical mapping of neuronal activity: from single growcones to the intact mammalian brain. Annu. Rev. Neurosci., 8, 263–305.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., and Segal, M., (1983). Optical monitoring of electrical activity; detection of spatiotemporal patterns of activity in hippocampal slices by voltage-sensitive probes. In Brain Slices, ed. R. Dingledine. New York: Plenum Press, pp. 227–261.

    Google Scholar 

  • Grinvald, A., Anglister, L., Freeman, J.A., Hildesheim, R., and Manker, A. (1984). Real time optical imaging of naturally evoked electrical activity in the intact frog brain. Nature, 308, 848–850

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., C.D. Gilbert, R. Hildesheim, E. Lieke., and T.N. Wiesel. (1985). Real time optical mapping of neuronal activity in the mammalian visual cortex in vitro and in vivo. Soc. Neurosci. Abstr., 11: 8.

    Google Scholar 

  • Grinvald, A., Cohen, L.B., Lesher, S., and Boyle, M.B., (1981). Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia, using a 124 element “Photodiode” array. J. Neurophysiol., 45, 829–840

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Frostig, R.D., Lieke, E.E., Hildesheim, R. (1988). Optical imaging of neuronal activity. Physiol Rev., 68, 1285–1366.

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Frostig, R.D., Siegel, R.M., and Bartfeld, E. (1991). High resolution optical imaging of neuronal activity in awake monkey, PNAS, 88, 11559–11563.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., Hildesheim, R., Farber, I.C., and Anglister, L. (1982b). Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys. J., 39, 301–308

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., Lieke, E., Frostig, R.D., Gilbert, C.D., and Wiesel, T.N. (1986a). Functional architecture of cortex revealed by optical imaging of intrinsic signals, Nature, 324, 361–364.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., Lieke, E.E., Frostig, R.D., Hildesheim, R. (1994), Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex, J. Neurosci., 14 (5), 2545–2568.

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Manker, A., and Segal, M. (1982a). Visualization of the spread of electrical activity in rat hippocampal slices by voltage sensitive optical probes. J. Physiol., 333, 269–291

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Salzberg, B.M., and Cohen, L.B. (1977). Simultaneous recordings from several neurons in an invertebrate central nervous system. Nature, 268, 140–142

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., Salzberg, B.M., Lev-Ram, V., and Hildesheim, R. (1987). Optical recording of synaptic potentials from processes of single neurons using intrcellular potentiometric dys. Biophys. J. 51: 643–651.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., Segal, M., kuhnt, U., Hildesheim, R., Manker, A., Anglister, L., and Freeman, J.A. (1986) Real-time optical mapping of neuronal activity in vertebrate CNS in vitro and in vivo. Soc. Gen. Physiol. Ser. 40: 165–197.

    PubMed  CAS  Google Scholar 

  • Gupta, R.G., Salzberg, B.M., Grinvald, A., Cohen, L.B., Kamino, K., Boyle, M.B., Waggoner, A.S., Wang, C.H. (1981). Improvements in optical methods for measuring rapid changes in membrane potential. J. Mem. Biol. 58, 123–137.

    Article  CAS  Google Scholar 

  • Haglund, M.M., Ojemann, G A, and Hochman, D.W. (1992). Optical imaging of epileptiform and functional activity in human cerebral cortex, Nature, 358, 668–671.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, VH., Harel, n., Kakigi, A., Raveh, E., and Mount, RJ. (1998). Optical imaging of intrinsic signals in chinchilla auditory cortex. Audiol Neurootal, 3, 214–223.

    Article  CAS  Google Scholar 

  • Hess, A., Scheich, H. (1994). Tonotopic organization of auditory cortical fields of the Mongolian Gerbil 2DG labeling and optical recording of intrinsic signals, Neurosci. Abstr., 141 (5).

    Google Scholar 

  • Hill, D.K., and Keynes, R.D. (1949). Opacity changes in stimulated nerve, J. Physiol., 108, 278–281.

    Google Scholar 

  • Hirota, A., Sato, K., Momosesato, Y., Sakai, T., and Kamino, K. (1995). A new simultaneous 1020 site optical recording system for monitoring neuronal activity using voltage sensitive dyes. J.Neurosci. Methods. 56, 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Horikawa, J., Hosokawa, Y., Nasu, M., and Taniguchi, I., (1997). Opti01 study of spatiotemporal inhibition evoked by 2 tone sequence in the guinea pig auditory cortex. J. of comparative physio.A sensory neural and behavioral physiology. 181, 677–684.

    Article  CAS  Google Scholar 

  • Hoshi, Y., Tamura, M. (1993). Dynamic multichannel near-infrared optical imaging of human brain activity, J. Appl. Physiol., 75, 1842–1846.

    PubMed  CAS  Google Scholar 

  • Hosokawa,Y., Horikawa, J., Nasu, M., and Taniguchi, I. (1997). Real time imaging of neural activity during binaural interaction in the guinea pig auditory cortex. J. of comparative physio.A sensory neural and behavioral physiology. 181, 607–614.

    Google Scholar 

  • Hubel, D.H. and T.N. Wiesel. (1965). Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. J. Neurophysiol. 28: 229–289.

    PubMed  CAS  Google Scholar 

  • Hubel, D.H., and Wiesel, T.N. (1962). Receptive fields, binocular interactions and functional architecture in the cat’s visual cortex. J. Physiol., 160, 106–154.

    PubMed  CAS  Google Scholar 

  • Hubener, M., Shoham, D., Grinvald, A., and Bonhoeffer, T. (1997). Spatial relationships among three columnar systems in cat area 17. J. Neurosci., 17, 9270–9284.

    PubMed  CAS  Google Scholar 

  • Ichikawa, M., Tominaga, T., Tominaga, Y., yamada, H., Yamamato, Y. and Matsomoto, G. (1998). Imaging of synaptic excitation at high special and temporal resolution at high temporal reso-lution using va novel CCD system in rat brain slices. Neurosci. Abs 24, 1812.

    Google Scholar 

  • Iijima, T., Matosomoto, G., Kisokoro, Y. (1992). Synaptic activation of rat adrenal-medula examined with a lrage photodiode array in combination with voltage sensitive dyes. Neurocscience 51, 211–219.

    Article  CAS  Google Scholar 

  • Inase, M., Iijima, T., Takashima, I., Takahashi, M., Shinoda, H., Hirose, H., Niisato, K.,Tsukada, K. (1998). Optical recording of the motor cortical activity during reafhing movement in the behaving monkey. Soc. Neurosci.Abstr., Vol. 24, (404).

    Google Scholar 

  • Jobsis, F.F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science, 198, 1264–1266.

    Article  PubMed  CAS  Google Scholar 

  • Jobsis, F.F., Keizer, J.H., LaManna, J.C., and Rosental, M.J. (1977). Reflectance spectrophotometry of cytochrome aa3 in vivo. J. Appl. Physiol.: Respirat. Environ. Exerlcise Physiol., 43: 858–872.

    CAS  Google Scholar 

  • Jobsis, F.F., Keizer, J.H., LaManna, J.C., Rosental, M.J. (1977). Reflectance spectrophotometry of cytochrome aa3 in vivo. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol., 43, 858–872.

    CAS  Google Scholar 

  • Kamino, K. (1991). Optical approaches to ontogeny of electrical activity and related functional-organization during early heart developnment. Phys.Rev., 71, 53–91.

    CAS  Google Scholar 

  • Kato, T., Kamei, A., Takashima, S., Ozaki, T. (1993). Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. J. Cereb. Blood Flow 0000 Me-tab., 13, 516–520.

    Article  CAS  Google Scholar 

  • Kauer, J.S. (1988). Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb. Nature, 331, 166–168.

    Article  PubMed  CAS  Google Scholar 

  • Kauer,J.S., Senseman, D.M., Cohen, M.A. (1987). Odor-elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage-sensitive dye. Brain Res 225:255–61.

    Google Scholar 

  • Kelin, D. (1925). On cytochrome, a respiratory pigment, common to inimals, yeast, and higher plants. Proc. R. Soc. B, 98, 312–339

    Article  CAS  Google Scholar 

  • Keller,A., Yagodin, S., Aroniadouanderjaska, V., Zimmer, LA., Ennis, ll., Sheppard,NF., and Shipley MT. Functional organization of rat olfactory bulb glomeruli revealed by optical imaging. J. Neurosci., 18, 2602–2612.

    Google Scholar 

  • Kenet, T., Arieli, A., Grinvald, A., and Tsodyks, M. (1997). Cortical population activity predicts both spontaneous and evoked single neuron firing rates. Neurosci. Jett. S48, p27

    Google Scholar 

  • Kenet, T.,Arieli, A., Grinvald,A., Shoham, D., Pawelzik, K., and Tsodyks, M. (1998). Spontaneous and evoked firing of single cortical neurons are predicted by population activity. Soc. Neurosci.Abstr., Vol. 24, (1138).

    Google Scholar 

  • Kety, S.S., Landau, W.M., Freygang, W.H., Rowland, L.P., Sokoloff, L. (1955). Estimation of regional circulation in the brain by uptake of an inert gas, American Physiological Society Abstracts: 85.

    Google Scholar 

  • Kim, D.S., Bonhoeffer, T. (1994). Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex, Nature, 370, 370–372.

    Article  PubMed  CAS  Google Scholar 

  • Kisvarday, Z.F., Kim, D.S., Eysel, U.T., Bonhoeffer, T. (1994). Relationship between lateral inhibitory connections and the topography of the orientation map in cat visual cortex, Europ. J. Neurosci., 6, 1619–1632.

    Article  CAS  Google Scholar 

  • Konnerth, A., and Orkand, R.K. (1986). Voltage sensitive dyes measurpotential changes in axons and glia of frog optic nerve. Neuroscience Lett., 66, 49–54.

    Article  CAS  Google Scholar 

  • Lamanna, J.C., Pikarsky, S.N., Sick, T.J., and Rosenthhal, M., (1985) A rapid-scanning spectropho- tometer designed for biological tissues in vitro or in vivo. Anal. Biochem. 144: 483–493.

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ram R. and A. Grinvald. K+ and Cat+ dependent communication between myelinated axons and oligodendrocytes revealed by voltage-sensitive dyes. Proc. Natl. Acad. Sci. USA, 83, 6651–6655, 1986

    Article  PubMed  CAS  Google Scholar 

  • Lassen, N.A., Ingvar, D.H. (1961). The blood flow of the cerebral cortex determined by radioactive krypton, Experimentia Basel, 17, 42–43

    Article  CAS  Google Scholar 

  • Lieke, E.E., Frostig, R.D., Arieli, A., Ts’o, D.Y., Hildesheim, R., Grinvald, A. (1989). Optical imaging of cortical activity; Real-time imaging using extrinsic dye signals and high resolution imaging based on slow intrinsic signals. Annu Rev of Physiol 51: 543–559.

    Article  CAS  Google Scholar 

  • Lieke, E.E., Frostig, R.D., Ratzlaff, E.H., Grinvald, A. (1988). Center/surround inhibitory interaction in macaque V1 revealed by real-time optical imaging. Soc Neurosci Abstr 14: 1122.

    Google Scholar 

  • Loew, L. M., Cohen, L. B., Salzberg, B. M., Obaid, A. L., and Bezanilla, F. (1985). Charge shift probes of membrane potential. Characterization of aminostyrylpyridinum dyes on the squid giant axon. Biophys J. 47: 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Loew, L.M. (1987). Optical measurement of electrical activity., CRC Press Inc., Boca Raton

    Google Scholar 

  • Loew, L.M., and Simpson, L.L. (1981). Charge shift probes of membrane potential. Biophys. J., 34: 353–363.

    Article  PubMed  CAS  Google Scholar 

  • Loew, L.M., Bonneville, G.W., and Surow, J. (1978). Charge shift probes of membrane potential theory. Biol. Chemistry. 17: 4065–4071.

    CAS  Google Scholar 

  • Loew, L.M., Scully, S., Simpson, L., and Waggoner, A.S., (1979). Evidence for a charge shift electro-chromic mechanism in a probe of membrane potential. Nature Lond. 281: 497–499.

    Article  PubMed  CAS  Google Scholar 

  • MacVicar, B.A., Hochman, D. (1991). Imaging of synaptically evoked intrinsic optical signals in hippocampal slices. J. Neurosci., 11, 1458–1469.

    CAS  Google Scholar 

  • MacVicar, B.A., Hochman, D., LeBlanc, F.E., Watson, T.W. (1990). Stimulation evoked changes in intrinsic optical signals in the human brain. Soc. Neurosci. Abstr., 16, 309.

    Google Scholar 

  • Malach, R., Amir, Y., Harel, M., and Grinvald, A. (1993). Novel aspects of columnar organization are revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc. Natl. Acad. Sci. USA 90, 10469–10473.

    Article  PubMed  CAS  Google Scholar 

  • Malach, R., Amir, Y., Harel, M., Grinvald, A. (1993). Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. PNAS 90, 10469–10473.

    Article  PubMed  CAS  Google Scholar 

  • Malach, R., Schirman, T.D., Harel, M., Tootell, R.B.H., and Malonek, D. (1997) Organization of intrinsic connections in owl monkey area MT. Cerebral Cortex, 7, 386–393.

    Article  PubMed  CAS  Google Scholar 

  • Malach, R., Tootell, R.B.H., and Malonek, D. (1994) Relationship between orientation Domains, Cytochrome Oxidase Stipes and intrinsic horizontal connections in Squirrel monkey area V2. Cerebral Cortex, 4, 151–165.

    Article  PubMed  CAS  Google Scholar 

  • Malach, R., Tootell, R.B.H., and Malonek, D. (1994). Relationship between orientation Domains, cytochrome oxidase stripes and intrinsic horizontal connections in squirrel monkey area V2.

    Google Scholar 

  • Malonek, D., Dirnagl, U., Lindauer, U., Yamada, K., Kanno, I, and Grinvald, A. (1997). Vascular imprints of neuronal activity. Relationships between dynamics of cortical blood flow, oxygenation and volume changes following sensory stimulation., Proc. Natl Acad. Sci. USA, 94,4826–14831

    Google Scholar 

  • Malonek, D., Grinvald, A. (1996). The imaging spectroscope reveals the interaction between electrical activity and cortical microcirculation; implication for functional brain imaging. Science, 272, 551–554.

    Article  PubMed  CAS  Google Scholar 

  • Malonek, D., Shoham, D., Ratzlaff, E., and A. Grinvald (1990) In vivo three dimensional optical imaging of functional architecture in primate visual cortex. Neurosci. Abstr. 16, 292.

    Google Scholar 

  • Malonek, D., Tootell, R.B.H., Grinvald, A. (1994). Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT. Proc. R. Soc. Lond. B, 258, 109–119.

    Article  CAS  Google Scholar 

  • Masino, S.A., Kwon, M.C., Dory, Y., Frostig, R.D. (1993). Structure-function relationships examined in rat barrel cortex using intrinsic signal optical imaging through the skull, Neurosci. Abstr., 702 (6).

    Google Scholar 

  • Mayevsky, A., and Chance, B. (1982). Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science, 217, 537–540

    Article  PubMed  CAS  Google Scholar 

  • Mayhew, J., Hu, DW., Zheng, Y., Askew, S., Hou, YQ.,Berwick,J., Coffey, PJ., and Brown, N. (1998). An evaluation of linear model analysis techniques for processing images of microcirculation activity. Neuroimage, 7, 49–71.

    CAS  Google Scholar 

  • Mc-Loughlin, N.P., and Blasdel, G.G. (1998). Wavelength dependent differences between optically determined functional maps from macaqe striate cortex. Neuroimage. 7, 326–36.

    Article  PubMed  CAS  Google Scholar 

  • Menon RS., Luknowsky, DC. And Gati, JS (1998). Mental chronometry using latency resolved functional MRI. Proc. Natl./Acad. Sci. USA. 95, 10902–10907.

    Article  CAS  Google Scholar 

  • Millikan, G.A. (1937). Experiments on muscle hemoglobin in vivo; the instantaneous measurement of muscle metabolism. Proc. R. Soc. B, 123, 218–241

    Article  CAS  Google Scholar 

  • Miyawaki-A; Llopis-J; Heim-R; McCaffery-JM; Adams-JA; Ikura-M; Tsien-RY (1997) Fluorescent indicators for Cat+ based on green fluorescent proteins and calmodulin. Nature, 388, 834–5

    Article  CAS  Google Scholar 

  • Mountcastle, V.B. (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol., 20, 408–434.

    CAS  Google Scholar 

  • Newsome, W.T., Britten, K.H., Movshon, J.A. (1989). Neuronal correlates of a perceptual decision, Nature, 341, 52–54.

    Article  PubMed  CAS  Google Scholar 

  • Obermayer, K., and Blasdel, G.G. (1993) Geometry of orientation and ocular dimonance columns in primate striate cortex. J. Neuroscie., 13, 4114–4129.

    CAS  Google Scholar 

  • Ogawa, S., Lee, T.M., Kay, A.R., (1990b). Brain magnetic resonance imaging with contrast dependent on blood oxygenation, PNAS 87, 9868–9872.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, S., Lee, T.M., Nayak, AS. (1990a). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields, Magn. Reson. Med., 14, 68–78.

    Article  CAS  Google Scholar 

  • Orbach, H.S. (1987). Monitoring electrical activity in rat cerebral cortex. In Optical measurement of electrical activity,. ed. L.M. Loew, CRC Press, Boca Raton

    Google Scholar 

  • Orbach, H.S. (1988). Monitoring electrical activity in rat cerebal cortex. In: Spectroscopic Membrane Probes, edited by L. M. Loew. Boca Raton, FL: CRC, Vol III, p. 115–136.

    Google Scholar 

  • Orbach, H.S., and Cohen, L.B. (1983)..Optical monitoring of activity from many areas of the in vitro and in vivo salamader olfactory bulb:a new method for studying functional organization in the vertebrate central nervous system. J. Neurosci., 3, 2251–2262

    Google Scholar 

  • Orbach, H.S., Cohen, L.B., and Grinvald, A. (1985). Optical mapping of electrical activity in rat somatosensory and visual cortex. J. Neurosci., 5, 1886–1895

    PubMed  CAS  Google Scholar 

  • Pikarsky, S.M., Lamanna, J.C., Sick, T.J., and Rosenthal, M. (1985). A computer-assisted rapidscannig spectrophotometer with applications to tissues in vitro and in vivo. Comput. Biomed. Res. 18: 408–421.

    Article  PubMed  CAS  Google Scholar 

  • Raichle, M.E., Martin, W.R.W., Herscovitz, P., Minton, M.A., Markham, J.J. (1983). Brain blood flow measured with intravenous H2(15)0. II. Implementation and validation, J. Nucl. Med., 24 (9), 790–798.

    PubMed  CAS  Google Scholar 

  • Ratzlaff, E.H., and Grinvald, A. (1991). A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J. Neurosci. Methods 36: 127–137.

    CAS  Google Scholar 

  • Rector, DM., Poe, GR., Redgrave, P., and Harper, RM. (1997). CCD video camera for high sensitiv-ity light measurements in freely behaving animals full source. J. of Neuro. Metho., 78, 85–91.

    Article  CAS  Google Scholar 

  • Rigler, R., Rable, C.R., and Jovin, T.M. (1974). A temperature jump apparatus for fluorescence measurements.Rev. Sci. Instrum. 45: 581–587.

    Google Scholar 

  • Roker, C, Heilemann, A, Fromherz, P. (1996) Time-resolved fluorescence of a hemicyanine dye: Dynamics of rotamerism and resolvation. J Phys. Chem. USA. 100: J2172–12177.

    Google Scholar 

  • Ross, W.N., and Reichardt, L.F. (1979). Species-specific effects on the optical signals of voltage sensitive dyes. J. Membr. Biol., 48, 343–356

    CAS  Google Scholar 

  • Ross, W.N., Salzberg, B.N., Cohen, L.B., Grinvald, A., Davila, H.V., Waggoner, A.S., Chang, C.H (1977) Changes in absorption, fluorescence, dichroism and birefringence in stained a: optical measurement of membrane potential. J Mem Biol 33: 141–183.

    CAS  Google Scholar 

  • Ross, W.N., Salzberg. BN., Cohen, L.B., Grinvald, A., Davila, H.V., Waggoner, A.S, Chang, C.H. (1977) Changes in absorption, fluorescence, dichroism and birefringence in stained axons: optical measurement of membrane potential. J Mem Biol 33:141–183. 1

    Article  CAS  Google Scholar 

  • Roy, C., Sherrington, C. (1890). On the regulation of the blood supply of the brain, J. Physiol., 11, 85–108.

    PubMed  CAS  Google Scholar 

  • Rumsey, W.L., Vanderkooi, J.M., Wilson, D.F. (1988). Imaging of phosphorescence; A novel method for measuring oxygen distribution in perfused tissue. Science, 2 1: 1649

    Article  Google Scholar 

  • Salama, G., and Morad, M. (1976). Merocyanine 540 as an optical prob bf transmembrane electrical activity in the heart. Science Wash. DC. 191: 485–487.

    Article  CAS  Google Scholar 

  • Salama, G., Lombardi, R., and Elson, J. (1987). Maps of optical action iotentials and NADH Flu- orescence in intact working hearts. AM.J.Physiol. 252 (Heart Circ. Physiol.21): H384–H394.

    PubMed  CAS  Google Scholar 

  • Salzberg, B.M., (1983). Optical recording of electrical activity in neurons using molecular probes. In Current Methods in Cellular Neurobiology„ eds. J. Barber, and J. McKelvy. New York: John Wiley 0000 Sons, p. 139–187

    Google Scholar 

  • Salzberg, B.M., Davila, H.V., and Cohen, L.B. (1973) Optical; recording of impulses in individual neurons of an invertebrate central nervous system. Natrure, 246, 508–509.

    Article  CAS  Google Scholar 

  • Salzberg, B.M., Grinvald, A., Cohen, L.B., Davila, H.V., and Ross, W.N. (1977). Optical recording of neuronal activity in an invertebrate central nervous system; simultaneous recording from several neurons. J. Neurophys., 40, 1281–1291.

    CAS  Google Scholar 

  • Salzberg, B.M., Obaid, A.L., and Gainer, H. (1986). Optical studies of excitation secretion at the vertebrate nerve terminal Soc. Gen Physiol., 40, 133–164.

    CAS  Google Scholar 

  • Salzberg, B.M., Obaid, A.L., and Gainer, H. (1986). Optical studies of excitation secretion at the vertebrate nerve terminal Soc. Gen Physiol, 40, 133–164.

    CAS  Google Scholar 

  • Salzberg, B.M., Obaid, A.L., Senseman, D.M., and Gainer, H. (1983). Optical recording of action potentials from vertebrate nerve terminals using potentiometric probs provide evidence for sodium and calcium components.Nature Lond. 306: 36–39

    CAS  Google Scholar 

  • Salzman, C.D., Britten, K.H., Newsome, W.T. (1990). Cortical microstimulation influences perceptual judgements of motion direction, Nature, 346, 174–177.

    Article  PubMed  CAS  Google Scholar 

  • Salzman, C.D., Murasugi, C.M., Britten, K.H., Newsome, W.T. (1992). Microstimulation in visual area MT: Effects on direction discrimination performance, J. Neurosci., 12, 2331–2355.

    PubMed  CAS  Google Scholar 

  • Shevelev, IA. (1998). Functional imaging of the brain by infrared radiation (thermoencephalos-copy) Progress in Neurobiology. 56, 269–305.

    CAS  Google Scholar 

  • Shmuel, A., and Grinvald, A. (1996). Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J. Neurosci., 16, 6945–6964.

    PubMed  CAS  Google Scholar 

  • Shoham,D., Glaser, D., Arieli, A., Hildesheim, R., and Grinvald, A. (1998). Imaging cortical architecture and dynamics at high spatial and temporal resolution with new voltage-sensitive dyes. Neurosci. Lett., Suppl 51 (S38).

    Google Scholar 

  • Shoham, D., Hubener, M., Grinvald, A., and Bonhoeffer, T. (1997). Spatio-temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex. Nature, 385, 529533.

    Google Scholar 

  • Shoham, D., Gottesfeld, Z., and Grinvald, A. (1993). Comparing maps of functional architecture obtained by optical imaging of intrinsic signals to maps and dynamics of cortical activity recorded with voltage sensitive dyes. Neurosci. Abs., 19: 618. 6

    Google Scholar 

  • Shoham, D., Grinvald, A. (1994). Visualizing the cortical representation of single fingers in primate area S1 using intrinsic signal optical imaging, Abstracts of the Israel Society for Neuroscience 3, 26.

    Google Scholar 

  • Shoham, D., Ullman, S, and Grinvald, A. (1991). Characterization of dynamic patterns of cortical activity by a small number of principle components. Neurosci. Abs., 17: 431. 8

    Google Scholar 

  • Shtoyerman, E., Vanzetta, I., Barabash, S., Grinvald, A. (1998). Spatio-temporal characteristics of oxy and deoxy hemoglobin concentration changes in response to visual stimulation in the awake monkey. Soc. Neurosci.Abstr., Vol. 24, (10).

    Google Scholar 

  • Siegel, M.S., Isacoff, E.Y. (1997) A genetically encoded optical probe of membrane voltage.Neuron., 19, 735–41

    CAS  Google Scholar 

  • Sirovich, L., Everson, R., Kaplan, E., Knight, B.W., Obrien, E., Orbach,D. (1996). Modeling the functional-organization of the visual cortex. Physica D, 96 355–366.

    Google Scholar 

  • Slovin, H., Arieli, A. and Grinvald, A. (1999) Voltage-sensitive dye imaging in the behaving monkey. Fifth IBRO Congress. Abstr. pp 129.

    Google Scholar 

  • Sokoloff, L. (1977). Relation between physiological function and energy metabolism in the central nervous system. J. Neurochem., 19, 13–26.

    Article  Google Scholar 

  • Sterkin, A., Arieli, A., Ferster, D., Glaser, D.E., Grinvald, A., and Lampl, I. (1998). Real-time optical imaging in cal visual cortex exhibits high similarity to intracllular. Neurosci.Lett.,Suppl 51 (S41)

    Google Scholar 

  • Stetter, M., Otto, T., Sengpiel, F., Hubener, M.,Bonhoeffer, T., Obermayer, K. (1998). Signal extraction from optical imaging data from cat area 17 by blind separation of sources. Soc.Neurosci.Abstr., Vol. 24, (9).

    Google Scholar 

  • Swindale, N.V., Matsubara, J.A., and Cynader, M.S. (1987). Surface organization of orientation and direction selectivity in cat area 18. J. Neurosci., 7, 1414–1427.

    PubMed  CAS  Google Scholar 

  • Tanifuji, M., Yamanaka, A., Sunaba, R., and Toyama, K. (1993). Propagation of excitation in the visual cortex studies by the optical recording. Japanese J. Physiol., 43, 57–59.

    Google Scholar 

  • Taniguchi, I., Hrikawa, J., Hosokawa, Y., and Nasu, M. (1997). Optical Imaging of cortical activity induced by intracochlear stimulation. Biomed. Resea.Tokyo. 18, 115–124

    Google Scholar 

  • Tasaki, I., and A. Warashina. (1976). Dye membrane interaction and its changes during nerve excitation. Photochem. Photobiol., 24, 191–207.

    Article  CAS  Google Scholar 

  • Tasaki, I., Watanabe, A., Sandlin, R., Carnay, L. (1968). Changes in fluorescence, turbidity and birefringence associated with nerve excitation, PNAS 61, 883–888.

    Article  PubMed  CAS  Google Scholar 

  • Toth, T.J., Rao, S.C., Kim, D.S., Somers, D., Sur, M. (1996). Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. Proc.Natl.Acad.Sci.U.S.A, 91: 9869–74

    Article  Google Scholar 

  • Toyama K. and Tanifuji M (1991). Seeing ecxcietation propagation in visual cortical slices Biomed. Res., 12, 145–147.

    Google Scholar 

  • Ts’o, D.Y, Roe, A.W., Shey, J. (1993). Functional connectivity within Vl and V2: Patterns and dynamics, Neurosci. Abstr., 618 (3).

    Google Scholar 

  • Ts’o, D.Y., Frostig, R.D., Lieke, E., and Grinvald, A. (1990). Functional organization of primate visual cortex revealed by high resolution optical imaging, Science, 24§, 417–420.

    Google Scholar 

  • Ts’o, D.Y., Gilbert, C.D., Wiesel, T.N. (1991). Orientation selectivity of and interactions between color and disparity subcompartments in area V2 of Macaque monkey, Neurosci. Abstr., 431 (7).

    Google Scholar 

  • Vanzetta, I., Grinvald, A. (1998). Phosphorescence decay measurements in cat visual cortex show early blood oxygenation level decrease in response to visual stimulation. Neurosci.Lett.,Suppl 51 (S42).

    Google Scholar 

  • Vnek, N., Ramsden, B.M., Hung, C.P., Goldman-Rakic, P.S., Roe, A.W. (1998). Optical imaging of functional domains in the awake behaving monkey. Soc. Neurosci.Abstr., Vol. 24, (1137).

    Google Scholar 

  • Vranesic, I., Iijima, T., Ichikawa, M., Matsumoto, G., Knopfell, T. (l994)’ Signal transmission in the parallel fiber Purkenje-cell system visualized by high resolution imaging. Proc. Natl. Sacad. Sci. USA. 91, 13014–134017.

    Google Scholar 

  • Waggoner, A.S. (1979). Dye indicators of membrane potential. Ann. Rev. Biophys. Bioener., 8, 4763

    Google Scholar 

  • Waggoner, A.S., and Grinvald, A. (1977). Mechanisms of rapid optical changes of potential sensitive dyes. Ann. N.Y. Acad. Sci., 303, 217–242.

    CAS  Google Scholar 

  • Wang,G., Tanaka, K., Tanifuji, M. (1994). Optical imaging of functional organization in Macaque inferotemporal cortex, Neuroscience Abstracts 138 (10), 316.

    Google Scholar 

  • Wenner, P, Tsau, Y, Cohen, LB, O’donovan MJ and Dan, Y. (1996) Voltage-sensitive dye recording using retrogradely transported dye in the chicken spinal cord: Staining and signal characteristics. J. Neurosci. Methods 70, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • William, H.B., Zhang,Y., Schofield, B., Fitzpatrick, D. (1997). Orientation Selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci., 15, 2112–2127.

    Google Scholar 

  • Wu, LY., Lam, YW., Falk, CX.,Cohen, LB., Fang, J., L, L., Prechtl, JC., Kleinfeld, D., and Tsau, Y. (1998). Voltage sensitive dyes for monitoring multineuronal activity in the intact central nervous system. Histoch. J. 30, 169–187

    CAS  Google Scholar 

  • Wyatt, J.S., Cope, D., Deply, D.T., Richardson, C.E., Edwards, A.D., Wray, S. (1990). Reynolds EOR. Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy, J. Appl.Physiol., 68, 1086–1091.

    PubMed  CAS  Google Scholar 

  • Wyatt, J.S., Cope, M., Deply, D.T., Wray, S., Reynolds, E.O.R. (1986). Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near-infrared spectrophotometry, Lancet, 2, 1063–1066.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Davidson, RM., Wei, MD., and Loew, LM. (1998). Membrane electric properties by com- bined patch-clamp and flurescence ratio imaging in single neurons. Biophys. J. 74, 48–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grinvald, A. et al. (1999). In-vivo Optical Imaging of Cortical Architecture and Dynamics. In: Windhorst, U., Johansson, H. (eds) Modern Techniques in Neuroscience Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58552-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58552-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63643-1

  • Online ISBN: 978-3-642-58552-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics