Skip to main content

Dabrafenib

  • Chapter
  • First Online:
Small Molecules in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 201))

Abstract

Dabrafenib was developed as a highly specific reversible inhibitor of V600-mutant BRAF kinase, an oncogenic mutation driving proliferation in many different types of aggressive tumors. Metastatic melanoma has a high prevalence of V600-mutant BRAF, and clinical trials showed that dabrafenib improved response rates and median progression-free survival in patients with V600E BRAF mutations, including those with brain metastasis. Preliminary results suggest that dabrafenib may also have some role in non-melanoma V600-mutant solid tumors; however, more studies are needed. With a well-tolerated toxicity profile and few drug interactions, dabrafenib is effective as a monotherapy; however, resistance eventually develops in most patients after persistent exposure to the drug. Current research focuses on combination strategies with dabrafenib to not only improve response rates but also overcome resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwala SS, Kirkwood JM, Gore M et al (2004) Temozolomide for the treatment of brain metastases associated with metastatic melanoma: a phase II study. J Clin Oncol 22:2101–2107

    Article  PubMed  CAS  Google Scholar 

  • American Cancer Society (2013) Cancer facts and figures 2013. American Cancer Society, Atlanta

    Google Scholar 

  • Atkins MB, Lotze MT, Dutcher JP et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116

    PubMed  CAS  Google Scholar 

  • Corcoran RB, Falchook GS, Infante JR et al (2012) BRAF V600 mutant colorectal cancer (CRC) expansion cohort from the phase I/II clinical trial of BRAF inhibitor dabrafenib (GSK2118436) plus MEK inhibitor trametinib (GSK1120212). J Clin Oncol (ASCO Meeting Abstract)

    Google Scholar 

  • Corcoran RB, Falchook GS, Infante JR et al (2013) Pharmacodynamic and efficacy analysis of the BRAF inhibitor dabrafenib (GSK436) in combination with the MEK inhibitor trametinib (GSK212) in patients with BRAFV600 mutant colorectal cancer (CRC). J Clin Oncol (Meeting Abstract)

    Google Scholar 

  • Dabrafenib (2013) Research Triangle Park. NC, GlaxoSmithKline, (package insert)

    Google Scholar 

  • Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  • Dhillon AS, Hagan S, Rath O et al (2007) MAP kinase signaling pathways in cancer. Oncogene 26:3279–3290

    Article  PubMed  CAS  Google Scholar 

  • Dumaz N, Hayward R, Martin J et al (2006) In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 66:9483–9491

    Article  PubMed  CAS  Google Scholar 

  • Falchook GS, Long GV, Kurzrock R et al (2012) Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumors: a phase 1 dose-escalation trial. The Lancet 379:1893–1901

    Article  CAS  Google Scholar 

  • Falchook GS, Trent JC, Heinrich MC et al (2013) BRAF mutant gastrointestinal stromal tumor: First report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget 4:310–315

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fang JY, Richardson BC (2005) The MAPK signaling pathways and colorectal cancer. Lancet Oncol 6:322–327

    Article  PubMed  CAS  Google Scholar 

  • Flaherty KT, Infante JR, Daud A et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Frasca F, Nucera C, Pellegriti G et al (2008) BRAF (V600E) mutation and the biology of papillary thyroid cancer. Endocr Relat Cancer 15:191–205

    Article  PubMed  CAS  Google Scholar 

  • Greger JG, Eastman SD, Zhang V et al (2012) Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther 11:909–920

    Article  PubMed  CAS  Google Scholar 

  • Guirguis LM, Yang JC, White DE et al (2002) Safety and efficacy of high-dose interleukin-2 therapy in patients with brain metastases. J Immunother 25:82–87

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hauschild A, Grob J, Dimidov LV et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. The Lancet 380:358–365

    Article  CAS  Google Scholar 

  • Hauschild A, Grob J, Dimidov LV et al (2013) An update on BREAK-3, a phase III, randomized trial: Dabrafenib (DAB) versus dacarbazine (DTIC) in patients with BRAF V600E-positive mutation metastatic melanoma (MM). J Clin Oncol (ASCO Meeting Abstract)

    Google Scholar 

  • Hong DS, Vence L, Falchook GS et al (2012) BRAF(V600) inhibitor GSK2118436 targeted inhibition of mutant BRAF in cancer patients does not impair overall immune competency. Clin Cancer Res 8:2326–3715

    Article  CAS  Google Scholar 

  • Johnnessen CM, Boehm JS, Kim SY (2010) COT/MAP3K8 drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972

    Article  CAS  Google Scholar 

  • Kainthla R, Kim KB, Falchook GS (2013) Dabrafenib for treatment of BRAF-mutant melanoma. Pharm Pers Med 7:21–29

    Google Scholar 

  • Kalady MF, Dejulius KL, Sanchez JA et al (2012) BRAF mutations in colorectal cancer are associated with distinct clinical characteristics and worse prognosis. Dis Colon Rectum 55:128–133

    Article  PubMed  Google Scholar 

  • Laquerre S, Arnone M, Moss K et al (2009) Abstract B88: a selective Raf kinase inhibitor induces cell death and tumor regression of human cancer cell lines encoding B-Raf V600E mutation. Mol Ca Ther (Meeting Abstract 8)

    Google Scholar 

  • Long GV, Menzies AM, Nagrial AM et al (2011) Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 29:1239–1246

    Article  PubMed  Google Scholar 

  • Long GV, Trefzer U, Davies MA et al (2012) Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): A multicentre, open-label, phase 2 trial. The Lancet 13:1087–1095

    Article  CAS  Google Scholar 

  • Mendoza MC, Er Emrah E, Blenis J (2011) The RAS-ERK and PI3K-mTOR pathways: cross-talk and compensation. Biochem Sci 36:320–328

    Article  CAS  Google Scholar 

  • Nathanson KL, Martin AM, Wubbenhorst B et al (2013) Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor dabrafenib (GSK2118436). Clin Cancer Res 19:4868–4878

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF (V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ouellet D, Grossmann KF, Limentani G et al (2013) Effects of particle size, food, and capsule shell composition on the oral bioavailability of dabrafenib, a BRAF inhibitor, in patients with BRAF mutation-positive tumors. J of Pharm Sci 102:3100–3109

    Article  CAS  Google Scholar 

  • Poulikakos PI, Persaud Y, Janakirman M et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–390

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Puri N, Ahmed S, Janamanchi V et al (2007) c-Met is a potentially new therapeutic target for treatment of human melanoma. Clin Cancer Res 13:2246–2253

    Article  PubMed  CAS  Google Scholar 

  • Rheault TR, Stellwagen JC, Adjabeng GM et al (2013) Discovery of dabrafenib: A selective inhibitor of Raf kinases with antitumor activity against B-Raf-driven tumors. ACS Med Chem Lett 4:358–362

    Article  CAS  Google Scholar 

  • Sanchez-Hernandez I, Baquero P, Calleros L et al (2012) Dual inhibition of (V600E) BRAF and the PI3K/AKT/mTOR pathway cooperates to induce apoptosis in melanoma cells through a MEK-independent mechanism. Cancer Lett 314:244–255

    Article  PubMed  CAS  Google Scholar 

  • Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    PubMed  CAS  Google Scholar 

  • Shinozaki M, Fujimoto A, Morton DL et al (2004) Incidence of BRAF oncogene mutation and clinical relevance for primary cutaneous melanomas. Clin Cancer Res 10:1753–1757

    Article  PubMed  CAS  Google Scholar 

  • Straussman R, Morikawa T, Shee K et al (2012) Tumor micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sumimoto H, Imabayashi F, Iwata T et al (2006) The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203:1651–1656

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • U.S. Food and Drug Administration (2013) Dabrafenib. Retrieved from http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm354477.htm, 29 May 2013

  • Villanueva J, Vultur A, Lee JT et al (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–695

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wan PT, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  PubMed  CAS  Google Scholar 

  • Weichsel R, Dix C, Woolridge L et al (2008) Profound inhibition of antigen-specific T-cell effector functions by dasatinib. Clin Cancer Res 14:2484–2491

    Article  PubMed  CAS  Google Scholar 

  • Wilmott JS, Long GV, Howie JR et al (2012) Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res 18:1386–1394

    Article  PubMed  CAS  Google Scholar 

  • Wilson TR, Fridlyand J, Yan Y et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao W, Gu YH, Song R et al (2008) Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation. Leukemia 22:1226–1233

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhika Kainthla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kainthla, R., Kim, K.B., Falchook, G.S. (2014). Dabrafenib. In: Martens, U. (eds) Small Molecules in Oncology. Recent Results in Cancer Research, vol 201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54490-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54490-3_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54489-7

  • Online ISBN: 978-3-642-54490-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics