Skip to main content

Considerations for Experimental Neuromodulation Following Grafting of the Spinal Cord to Skeletal Muscles for Clinical Application

  • Chapter
  • First Online:
Samii's Essentials in Neurosurgery

Abstract

No current microsurgical approach has been clinically demonstrated to restore voluntary motor functioning distal to the site of spinal cord severance, for example, by direct reconnection of motor neurons within the cord tissue. Studies have shown that a number of different factors may account for the nonpermissiveness of the spinal cord environment and the limited functional regeneration of axons across the site of complete spinal cord damage. Building on the seminal work of David and Aguayo, Brunelli and colleagues showed that central axons are able to regenerate and extend long distances through a peripheral nerve graft, suggesting that they can regrow in an appropriate environment. However, their successfully tested and novel concept of peripheral nerve bypass grafting has not yet been implemented for further reconstructive experimental or clinical procedures for the treatment of brachial plexus or complete spinal cord injury. Their concept of central nervous system (CNS) single-cell plasticity remains a matter of ongoing debate. Neuroprotection and neuroplasticity following spinal cord injury are crucial for functional recovery and are dependent on CNS neuromodulation. Our transdisciplinary experimental study aimed to validate Brunelli’s paradigm in adult female Sprague–Dawley rats. We analyzed biochemical and histomorphological changes associated with CNS plasticity and neuromodulation to clarify the pathogenetic mechanisms underlying focal damage, as well as the interactions and overlap with neuroprotective and repair processes (i.e., endogenous defense activities). With this work, we hope to establish a robust new animal experimental paradigm that might be transferred later to clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews MR, Stelzner DJ (2007) Evaluation of olfactory ensheathing and schwann cells after implantation into a dorsal injury of adult rat spinal cord. J Neurotrauma 24:1773–1792

    Article  PubMed  Google Scholar 

  2. Brunelli G, Milanesi S (1988) Experimental repair of spinal cord lesions by grafting from CNS to PNS. J Reconstr Microsurg 4:245–250

    Article  CAS  PubMed  Google Scholar 

  3. Brunelli G, Spano P, Barlati S, Guarneri B, Barbon A, Bresciani R, Pizzi M (2005) Glutamatergic reinnervation through peripheral nerve graft dictates assembly of glutamatergic synapses at rat skeletal muscle. Proc Natl Acad Sci U S A 102:8752–8757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Brunelli G, von Wild K (2009) Unsuspected plasticity of single neurons after connection of the corticospinal tract with peripheral nerves in spinal cord lesions. J Korean Neurosurg Soc 46:1–4

    Article  PubMed Central  PubMed  Google Scholar 

  5. Brunelli G, Wild K (2008) Unsuspected plasticity of single neurons after connection of the corticospinal tract with peripheral nerves in spinal cord lesions. J Reconstr Microsurg 24:301–304

    Article  PubMed  Google Scholar 

  6. Brunelli GA (2007) Experimental neurotisation of the brachial plexus by means of nerve grafting from the corticospinal tract of the proximal spinal cord at the T3-T4 level. J Hand Surg Eur Vol 32:620–625

    Article  CAS  PubMed  Google Scholar 

  7. Brunelli GA, Brunelli GR (1996) Experimental surgery in spinal cord lesions by connecting upper motoneurons directly to peripheral targets. J Peripher Nerv Syst 1:111–118

    CAS  PubMed  Google Scholar 

  8. Cao L, Zhu YL, Su Z, Lv B, Huang Z, Mu L, He C (2007) Olfactory ensheathing cells promote migration of Schwann cells by secreted nerve growth factor. Glia 55:897–904

    Article  PubMed  Google Scholar 

  9. Carlstedt T, Cullheim S, Risling M, Ulfhake B (1989) Nerve fibre regeneration across the PNS-CNS interface at the root-spinal cord junction. Brain Res Bull 22:93–102

    Article  CAS  PubMed  Google Scholar 

  10. Carlstedt T, Linda H, Cullheim S, Risling M (1986) Reinnervation of hind limb muscles after ventral root avulsion and implantation in the lumbar spinal cord of the adult rat. Acta Physiol Scand 128:645–646

    Article  CAS  PubMed  Google Scholar 

  11. Cruz R, Francis L, Diaz-Suarez CM, Gonzalez-Fraguela ME (1998) Short-term effects of septo-hippocampal pathway transection and cerebrolysin effects on glutathione-related enzymes in the rat brain. Rev Neurol 26:551–554

    CAS  PubMed  Google Scholar 

  12. Danton GH, Dietrich WD (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62:127–136

    CAS  PubMed  Google Scholar 

  13. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931–933

    Article  CAS  PubMed  Google Scholar 

  14. Dietz V (2008) Ready for human spinal cord repair? Brain 131:2240–2242

    Article  PubMed  Google Scholar 

  15. Dietz V, Curt A (2006) Neurological aspects of spinal-cord repair: promises and challenges. Lancet Neurol 5:688–694

    Article  PubMed  Google Scholar 

  16. Dietz V, Muller R (2004) Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures. Brain 127:2221–2231

    Article  PubMed  Google Scholar 

  17. Haninec P, Dubovy P, Samal F, Houstava L, Stejskal L (2004) Reinnervation of the rat musculocutaneous nerve stump after its direct reconnection with the C5 spinal cord segment by the nerve graft following avulsion of the ventral spinal roots: a comparison of intrathecal administration of brain-derived neurotrophic factor and Cerebrolysin. Exp Brain Res 159:425–432

    Article  CAS  PubMed  Google Scholar 

  18. Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    Article  PubMed  Google Scholar 

  19. Keyvan-Fouladi N, Raisman G, Li Y (2005) Delayed repair of corticospinal tract lesions as an assay for the effectiveness of transplantation of Schwann cells. Glia 51:306–311

    Article  PubMed  Google Scholar 

  20. Li Y, Raisman G (1994) Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord. J Neurosci 14:4050–4063

    CAS  PubMed  Google Scholar 

  21. Muresanu DF, Buzoianu A, Florian SI, von Wild T (2012) Towards a roadmap in brain protection and 570 recovery. J Cell Mol Med 16(12):2861–2871

    Google Scholar 

  22. Onose G, Anghelescu A, Muresanu DF, Padure L, Haras MA, Chendreanu CO, Onose LV, Mirea A, Ciurea AV, EL Masri WS, VON Wild KR (2009) A review of published reports on neuroprotection in spinal cord injury. Spinal Cord 47:716–726

    Article  CAS  PubMed  Google Scholar 

  23. Oudega M, Moon LD, de Almeida Leme RJ (2005) Schwann cells for spinal cord repair. Braz J Med Biol Res 38:825–835

    Article  CAS  PubMed  Google Scholar 

  24. Pizzi M, Brunelli G, Barlati S, Spano P (2006) Glutamatergic innervation of rat skeletal muscle by supraspinal neurons: a new paradigm in spinal cord injury repair. Curr Opin Neurobiol 16:323–328

    Article  CAS  PubMed  Google Scholar 

  25. Rinholm JE, Slettalokken G, Marcaggi P, Skare O, Storm-Mathisen J, Bergersen LH (2007) Subcellular localization of the glutamate transporters GLAST and GLT at the neuromuscular junction in rodents. Neuroscience 145:579–591

    Article  CAS  PubMed  Google Scholar 

  26. Schlosshauer B, Muller E, Schroder B, Planck H, Muller HW (2003) Rat Schwann cells in bioresorbable nerve guides to promote and accelerate axonal regeneration. Brain Res 963:321–326

    Article  CAS  PubMed  Google Scholar 

  27. Sharma HS, Zimmermann-Meinzingen S, Johanson CE (2010) Cerebrolysin reduces blood-cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat. Ann N Y Acad Sci 1199:125–137

    Article  CAS  PubMed  Google Scholar 

  28. Stichel CC, Hermanns S, Luhmann HJ, Lausberg F, Niermann H, D’urso D, Servos G, Hartwig HG, Muller HW (1999) Inhibition of collagen IV deposition promotes regeneration of injured CNS axons. Eur J Neurosci 11:632–646

    Article  CAS  PubMed  Google Scholar 

  29. Stichel CC, Lausberg F, Hermanns S, Muller HW (1999) Scar modulation in subacute and chronic CNS lesions: effects on axonal regeneration. Restor Neurol Neurosci 15:1–15

    PubMed  Google Scholar 

  30. Stichel CC, Muller HW (1998) Experimental strategies to promote axonal regeneration after traumatic central nervous system injury. Prog Neurobiol 56:119–148

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias von Wild MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Wild, T., von Wild, K.R.H., Muresanu, D.F., Catoi, C. (2014). Considerations for Experimental Neuromodulation Following Grafting of the Spinal Cord to Skeletal Muscles for Clinical Application. In: Ramina, R., de Aguiar, P., Tatagiba, M. (eds) Samii's Essentials in Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54115-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54115-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54114-8

  • Online ISBN: 978-3-642-54115-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics