Skip to main content

Randomness and Constraints in the Cortical Neuropil

  • Conference paper
Information Processing in the Cortex

Abstract

Among neuroanatomists working on the cerebral cortex there is a controversy about specificity of connections as opposed to randomness. I want to report on this topic here from the point of view of our research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aertsen A, Gerstein G (1985) Evaluation of neuronal connectivity: Sensitivity of cross-correlation. Brain Res 340:341–354

    Article  CAS  PubMed  Google Scholar 

  • Abeles M (1982) Local Cortical Circuits. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Apfelbach R and Weiler E (1985) Olfactory deprivation enhances normal spine loss in the olfactory bulb of developing ferrets. Neurosci Lett 62:169–173

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1986) Ratio of pyramidal cells versus non-pyramidal cells in the human frontal isocortex and changes in ratio with aging and Alzheimer’s disease. In: Swaab DF, Fliers E, Mirmiran M, Van Gool WA, Van Haaren F (eds) Progress in Brain Research. Elsevier Science Fubl. Amsterdam pp 185–212

    Google Scholar 

  • Braitenberg V (1978 a) Cortical architectonics: general and areal. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York pp 443–465

    Google Scholar 

  • Braitenberg V (1978 b) Cell assemblies in the cerebral cortex. In: Heim R, Palm G (eds) Lecture Notes in Biomathematics (21). Theoretical Approaches to Complex Systems. Springer, Berlin Heidelberg New York, pp 171–188

    Chapter  Google Scholar 

  • Braitenberg V (1986) Two views of the cerebral cortex. In: Palm G, Aertsen A (eds) Brain Theory. Springer, Berlin Heidelberg pp 81–96

    Chapter  Google Scholar 

  • Braitenberg V, Schüz A (1991) Anatomy of the Cortex. Statistics and Geometry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287

    Article  CAS  PubMed  Google Scholar 

  • Elhanany E, White EL (1990) Intrinsic circuitry: synapses involving the local axon collaterals of corticocortical projection neurons in the mouse primary somatosensory cortex. J Comp Neurol 291:43–54

    Article  CAS  PubMed  Google Scholar 

  • Fairén A, Valverde F (1980) A specialized type of neuron in the visual cortex of the cat: A Golgi and electron microscope study of chandelier cells. J Comp Neurol 194:761–779

    Article  PubMed  Google Scholar 

  • Fisken RA, Garey LJ and Powell TPS (1975) The intrinsic, association and commissural connections of area 17 of the visual cortex. Phil Trans Roy Soc ser B 272:(919) 487–536

    Article  CAS  Google Scholar 

  • Gabbott PLA, Martin KAC, Whitteridge D (1987) Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17). J Comp Neurol 259:364–381

    Article  CAS  PubMed  Google Scholar 

  • Gabbott PLA, Somogyi P (1986) Quantitative distribution of GABA/immunoreactive neurons in the visual cortex (area 17) of the cat. Exp Brain Res 61:323–331

    CAS  PubMed  Google Scholar 

  • Harvey RJ, Napper RMA (1988) A quantitative study of Purkinje and granule cells in the cerebellar cortex of the rat. J Comp Neurol 274:151–157

    Article  CAS  PubMed  Google Scholar 

  • Hebb DO (1949) Organization of Behavior. A neuropsychological Theory. 2nd edition (1961). Wiley & Sons Inc., New York

    Google Scholar 

  • Hellwig B (1990) Dichte und Verteilung präsynaptischer Boutons. Ein Beitrag zur Synaptologie der Grosshimrinde. Dissertation, Medizinische Fakultät, Universität Tübingen

    Google Scholar 

  • Hellwig B, Schüz A, Aertsen A: Density and distribution of presynaptic boutons on Golgi stained axons in the cortex of the mouse. In preparation

    Google Scholar 

  • Hendry SHC, Schwark HD, Jones EG, Yan J (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurod 7:1503–1519

    CAS  Google Scholar 

  • Hübener M, Schwarz C, Bolz J (1990) Morphological types of projection neurons in layer 5 of cat visual cortex. J Comp Neurol 301:655–674

    Article  PubMed  Google Scholar 

  • Huttenlocher PR, de Courten C (1987) The development of synapses in striate cortex of man. Human Neurobiol 6:1–9

    CAS  Google Scholar 

  • Jones EG (1990) Modulatory events in the development and evolution of primate neocortex. In: Jones EG, Peters A (eds) Cerebral Cortex, Vol. 8A, Comparative Structure and Evolution of Cerebral Cortex, Part I. Plenum Press, New York London

    Chapter  Google Scholar 

  • Kaplan AS, Scheibel AB (1980) Giant spine-poor pyramidal cells in auditory cortex of young and aged cats. Soc Neurosci Abstr 6:557

    Google Scholar 

  • Kisvärday ZF, Martin KAC, Freund TF, Magloczky ZF, Whitteridge D, Somogyi P (1986) Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp Brain Res 64:541–552

    Article  PubMed  Google Scholar 

  • LeVay S (1973) Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations. J Comp Neurol 150:53–86

    Article  CAS  PubMed  Google Scholar 

  • Lund JS (1984) Spiny stellate neurons. In: Peters A, Jones EG (eds) Cerebral Cortex Vol. 1., Cellular components of the cerebral cortex. Plenum Press, New York London pp. 255–308

    Google Scholar 

  • McGuire BA, Homung J-P, Gilbert CD, Wiesel TN (1984) Patterns of synaptic input to layer 4 of cat striate cortex. J Neurosci 4:3021–3033

    CAS  PubMed  Google Scholar 

  • Merzenich MM, Nelson RJ, Stryker MP, Cynader, MS, Schoppmann A and Zook JM (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 224:591–605

    Article  CAS  PubMed  Google Scholar 

  • Pamavelas JG, Sullivan K, Lieberman AR, Webster KE (1977) Neurons and their synaptic organization in the visual cortex of the rat. Cell Tiss Res 183:499–517

    Google Scholar 

  • Peters A, Fairen A (1978) Smooth and sparsely spined stellate cells in the visual cortex of the rat. A study using a combined Golgi electron microscopic technique. J Comp Neurol 181:129–172

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Feldman ML (1976) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description. J Neurocyt 5:63–84

    Article  CAS  Google Scholar 

  • Peters A, Kara DA (1985) The neuronal composition of area 17 of rat visual cortex. I. The pyramidal cells. J Comp Neurol 234:218–241

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Kimerer LM (1981) Bipolar neurons in rat visual cortex. A combined Golgi-electron microscopic study. J Neurocytol 10:921–946

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Proskauer CC (1980) Synaptic relationships between a multipolar stellate cell and a pyramidal neuron in the rat visual cortex. A combined Golgi-electron microscope study. J Neurocytol 9:163–183

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Proskauer CC, Ribak CE (1982) Chandelier cells in rat visual cortex. J Comp Neurol 206:397–416

    Article  CAS  PubMed  Google Scholar 

  • Schüz A (1981) Prenatal formation of synapses and dendritic spines in Guinea pig cortex and their postnatal changes. In: Szdleky G, Labos E, Damjanovich S (eds) Adv. Physiol. Sci. Vol. 30. Neural Communication and Control. Pergamon Press

    Google Scholar 

  • Schüz A, Münster A (1985) Synaptic density on the axonal tree of a pyramidal cell in the cortex of the mouse. Neuroscience 15:33–39

    Article  PubMed  Google Scholar 

  • Schüz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286:442–455

    Article  PubMed  Google Scholar 

  • Somogyi P (1978) The study of Golgi stained cells and of experimental degeneration under the electron microscope: A direct method for the identification in the visual cortex of three successive links in a neuron chain. Neuroscience 3:167–180

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P (1979) An intemeurone making synapses specificially on the axon initial segment of pyramidal cells in the cerebral cortex. J Physiol 296:18–19

    Google Scholar 

  • Somogyi P, Cowey A (1981) Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J Comp Neurol 195:547–566

    Article  CAS  PubMed  Google Scholar 

  • Sloper JJ, Powell TPS (1979) An experimental electron microscopic study of afferent connections to the primate motor and somatic sensory cortices. Phil Trans Roy Soc ser B 285:199–225

    Article  CAS  Google Scholar 

  • Wallhäuser E, Scheich H (1987) Auditory imprinting leads to differential 2-deoxyglucose uptake and dendritic spine loss in the chick rostral forebrain. Dev Brain Res 31:29–44

    Article  Google Scholar 

  • White EL (1978) Identified neurons in mouse SmI cortex which are postsynaptic to thalamocortical axon terminals: A combined Golgi-electron microscopic and degeneration study. J Comp Neurol 181:627–662.

    Article  CAS  PubMed  Google Scholar 

  • White EL (1989) Cortical Circuits. Synaptic Organization of the Cerebral Cortex. Structure, Function, and Theory. Birkhäuser, Boston, Basel, Berlin

    Google Scholar 

  • White EL, Kersch SM (1981) Thalamocortical synapses of pyramidal cells which project from Sml to Msl cortex in the mouse. J Comp Neurol 198:167–181

    Article  CAS  PubMed  Google Scholar 

  • White EL, Keller A (1987) Intrinsic circuitry involving the local axon collaterals of corticothalamic projection cells in mouse Sml cortex. J Comp Neurol 262:13–26

    Article  CAS  PubMed  Google Scholar 

  • Winfield DA, Brooke RNL, Sloper JJ, Powell TPS (1981) A combined Golgi-electron microscopic study of the synapses made by the proximal axon and recurrent collaterals of a pyramidal cell in the somatic sensory cortex of the monkey. Neuroscience 6:1217–1230

    Article  CAS  PubMed  Google Scholar 

  • Winfield DA, Gatter KC, Powell TPS (1980) An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat. Brain 103:245–258

    Article  CAS  PubMed  Google Scholar 

  • Wise SP, Hendiy SHC, Jones EG (1977) Prenatal development of sensorimotor cortical projections in cats. Brain Res 138:538–544

    Article  CAS  PubMed  Google Scholar 

  • Wise SP, Jones EG (1978) Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex. J Comp Neurol 178:187–208

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schüz, A. (1992). Randomness and Constraints in the Cortical Neuropil. In: Aertsen, A., Braitenberg, V. (eds) Information Processing in the Cortex. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49967-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49967-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49969-2

  • Online ISBN: 978-3-642-49967-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics