Skip to main content

Arthropod Developmental Endocrinology

  • Chapter
  • First Online:
Arthropod Biology and Evolution

Abstract

Embryonic development in arthropods appears to be largely controlled by gene regulatory cascades and networks, and gene products that move by diffusion. By contrast, postembryonic growth and differentiation are controlled almost entirely by circulating hormones and secreted growth factors. Also, in contrast to the dozens and perhaps hundreds of genes that control early stages of embryonic specification and differentiation, only a very small handful of developmental hormones control an extraordinarily diverse array of postembryonic developmental processes ranging from growth, to moulting, metamorphosis, and the development of alternative phenotypes in response to environmental signals. Hormones such as ecdysone and juvenile hormone can have many categorically different effects, depending on the species, stage of the life cycle, and target tissue. Some hormones, such as ecdysone, appear to be used universally across the Arthropoda whereas others such as juvenile hormone and androgenic hormone are taxon restricted (to the Insecta and decapod Crustacea, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agui N (1989) In vitro release of prothoracicotropic hormone (PTTH) from the cultured brain of Mamestra brassicae L.; effects of neurotransmitters on PTTH release. In: Mitsuhashi J (ed) Invertebrate cell system applications. CRC Press, Boca Raton, pp 111–119

    Google Scholar 

  • Ament SA, Corona M, Pollock HS, Robinson GE (2008) Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc Natl Acad Sci USA 105:4226–4231

    Article  PubMed  CAS  Google Scholar 

  • Andersen S (1979) Biochemistry of insect cuticle. Annu Rev Entomol 24:29–59

    Article  CAS  Google Scholar 

  • Anger K (1985) Development and growth in larval and juvenile Hyas coarctatus (Decapoda, Majidae) reared in the laboratory. Mar Ecol Progr Ser 19:115–123

    Article  Google Scholar 

  • Ashburner M (1972) Patterns of puffing activity in the salivary gland chromosomes of Drosophila. Chromosoma 38:255–281

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M (1973) Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster: I. Dependence upon ecdysone concentration. Dev Biol 35:47–61

    Article  PubMed  CAS  Google Scholar 

  • Aslam AFM, Kiya T, Mita K, Iwami M (2011) Identification of novel bombyxin genes from the genome of the silkmoth Bombyx mori and analysis of their expression. Zool Sci 28:609–616

    Article  PubMed  CAS  Google Scholar 

  • Audsley N, Weaver RJ, Edwards JP (2000) Juvenile hormone biosynthesis by corpora allata of larval tomato moth, Lacanobia oleracea, and regulation by Manduca sexta allatostatin and allatotropin. Insect Biochem Mol Biol 30:681–689

    Article  PubMed  CAS  Google Scholar 

  • Avruch J, Hara K, Lin Y, Liu M, Long X, Ortiz-Vega S, Yonezawa K (2006) Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene 25:6361–6372

    Article  PubMed  CAS  Google Scholar 

  • Beck SD (1971) Growth and retrogression in larvae of Trogoderma glabrum (Coleoptera: Dermestidae). 1. Characteristics under feeding and starvation conditions. Ann Entom Soc Am 64:149–155

    Google Scholar 

  • Beck SD (1973) Growth and retrogression in larvae of Trogoderma glabrum (Coleoptera: Dermestidae). 4. Developmental characteristics and adaptive functions. Ann Entom Soc Am 66:895–900

    Google Scholar 

  • Berghiche H, Smagghe G, Van de Velde S, Soltani N (2007) In vitro cultures of pupal integumental explants to bioassay insect growth regulators with ecdysteroid activity for ecdysteroid amounts and cuticle secretion. Afr J Agr Res 2:208–213

    Google Scholar 

  • Beydon P, Permana A, Colardeau J, Morinière M, Lafont R (1989) Ecdysteroids from developing eggs of Pieris brassicae. Arch Insect Biochem Physiol 11:1–11

    Article  CAS  Google Scholar 

  • Bitsch C, Baehr J, Bitsch J (1985) Juvenile hormones in Thermobia domestica females: Identification and quantification during biological cycles and after precocene application. Cell Mol Life Sci 41:409–410

    Article  CAS  Google Scholar 

  • Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97:865–875

    Article  PubMed  CAS  Google Scholar 

  • Borst D, Laufer H, Landau M, Chang E, Hertz W, Baker F, Schooley D (1987) Methyl farnesoate and its role in crustacean reproduction and development. Insect Biochem 17:1123–1127

    Article  CAS  Google Scholar 

  • Borst D, Ogan J, Tsukimura B, Claerhout T, Holford K (2001) Regulation of the crustacean mandibular organ. Am Zool 41:430–441

    Article  CAS  Google Scholar 

  • Borst D, Wainwright G, Rees H (2002) In vivo regulation of the mandibular organ in the edible crab, Cancer pagurus. Proc R Soc B 269:483–490

    Article  PubMed  CAS  Google Scholar 

  • Bortolotti L, Duchateau MJ, Sbrenna G (2001) Effect of juvenile hormone on caste determination and colony processes in the bumblebee Bombus terrestris. Ent Exp Appl 101:143–158

    Article  CAS  Google Scholar 

  • Britton J, Edgar B (1998) Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125:2149–2158

    PubMed  CAS  Google Scholar 

  • Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11:213–221

    Article  PubMed  CAS  Google Scholar 

  • Bruce M, Chang E (1984) Demonstration of a molt-inhibiting hormone from the sinus gland of the lobster, Homarus americanus. Comp Biochem Physiol A Physiol 79:421–424

    Article  Google Scholar 

  • Caldwell PE, Walkiewicz M, Stern M (2005) Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release. Curr Biol 15:1785–1795

    Article  PubMed  CAS  Google Scholar 

  • Callier V, Nijhout H (2011) Control of body size by oxygen supply reveals size-dependent and size-independent mechanisms of molting and metamorphosis. Proc Natl Acad Sci USA 108:14664–14669

    Article  PubMed  CAS  Google Scholar 

  • Champlin D, Truman J (2000) Ecdysteroid coordinates optic lobe neurogenesis via a nitric oxide signaling pathway. Development 127:3543–3551

    PubMed  CAS  Google Scholar 

  • Chang E (1985) Hormonal control of molting in decapod Crustacea. Am Zool 25:179–185

    CAS  Google Scholar 

  • Chang E (1993) Comparative endocrinology of molting and reproduction: insects and crustaceans. Annu Rev Entomol 38:161–180

    Article  PubMed  CAS  Google Scholar 

  • Chang E, Mykles D (2011) Regulation of crustacean molting: a review and our perspectives. Gen Comp Endocrinol 172:323–330

    Article  PubMed  CAS  Google Scholar 

  • Charles J-P, Iwema T, Epa V, Takaki K, Rynes J, Jindra M (2011) Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc Natl Acad Sci USA 108:21128–21133

    Article  PubMed  CAS  Google Scholar 

  • Charmantier G, Charmantier-Daures M (1998) Endocrine and neuroendocrine regulations in embryos and larvae of crustaceans. Invert Repr Dev 33:273–287

    Article  CAS  Google Scholar 

  • Chiang RG, Davey KG (1988) A novel receptor capable of monitoring applied pressure in the abdomen of an insect. Science 241:1665–1667

    Article  PubMed  CAS  Google Scholar 

  • Christiansen K (1964) Bionomics of Collembola. Annu Rev Entomol 9:147–178

    Article  Google Scholar 

  • Christie A (2011) Crustacean neuroendocrine systems and their signaling agents. Cell Tissue Res 345:41–67

    Article  PubMed  CAS  Google Scholar 

  • Cnaani J, Hefetz A (2001) Are queen Bombus terrestris giant workers or are workers dwarf queens? Solving the ‘chicken and egg’ problem in a bumblebee species. Naturwissenschaften 88:85–87

    Article  PubMed  CAS  Google Scholar 

  • Cnaani J, Robinson G, Hefetz A (2000) The critical period for caste determination in Bombus terrestris; and its juvenile hormone correlates. J Comp Physiol A: Neuroethol Sens Neur BehavPhysiol 186:1089–1094

    Article  CAS  Google Scholar 

  • Cole B (1980) Growth ratios in holometabolous and hemimetabolous insects. Ann Entom Soc Am 79:489–491

    Google Scholar 

  • Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Leopold P (2003) A nutrient sensor mechanism controls Drosophila growth. Cell 114:739–749

    Article  PubMed  CAS  Google Scholar 

  • Comeau M, Savoie F (2001) Growth increment and molt frequency of the American lobster (Homarus americanus) in the southwestern Gulf of St. Lawrence. J Crust Biology 21:923–936

    Article  Google Scholar 

  • Connat JL, Delbecque JP, Delachambre J (1984) The onset of metamorphosis in Tenebrio molitor L.: effects of a juvenile hormone analogue and of 20-hydroxyecdysone. J Insect Physiol 30:413–419

    Article  CAS  Google Scholar 

  • Corbitt TS, Hardie J (1985) Juvenile hormone effects on polymorphism in the pea aphid, Acyrthosiphon pisum. Ent Exp App 38:131–135

    Article  Google Scholar 

  • Cornette R, Gotoh H, Koshikawa S, Miura T (2008) Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). J Insect Physiol 54:922–930

    Article  PubMed  CAS  Google Scholar 

  • Costlow J (1968) Metamorphosis in crustaceans. In: Etkin W, Gilbert LI (eds) Metamorphosis, Appleton, New York, pp 3–41

    Google Scholar 

  • de Azevedo SV, Hartfelder K (2008) The insulin signaling pathway in honey bee (Apis mellifera) caste development–differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. J Insect Physiol 54:1064–1071

    Article  PubMed  CAS  Google Scholar 

  • de la Paz A, Delbecque J, Bitsch J, Delachambre J (1983) Ecdysteroids in the haemolymph and the ovaries of the firebrat Thermobia domestica (Packard) (Insecta, Thysanura): correlations with integumental and ovarian cycles. J Insect Physiol 29:323–329

    Article  Google Scholar 

  • Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122

    Article  PubMed  CAS  Google Scholar 

  • Dinan L, Hormann R (2005) Ecdysteroid agonists and antagonists. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 3. Elsevier Pergamon, Oxford, pp 197–242

    Chapter  Google Scholar 

  • Dinan L, Spindler-Barth M, Spindler K-D (1990) Insect cell lines as tools for studying ecdysteroid action. Invert Repr Dev 18:43–53

    Article  CAS  Google Scholar 

  • Ding Q, Tobe S (1991) Production of farnesoic acid and methyl farnesoate by mandibular organs of the crayfish, Procambarus clarkii. Insect Biochem 21:285–291

    Article  CAS  Google Scholar 

  • Dodson S (1989) Predator-induced reaction norms. Bioscience 39:447–452

    Article  Google Scholar 

  • Dyar H (1890) The number of molts of lepidopterous larvae. Psyche 5:420–422

    Article  Google Scholar 

  • Edgar B, Nijhout H (2004) Growth and cell cycle control in Drosophila. In: Hall MN, Raff M, Thomas G (eds) Cell growth. Control of cell size. Cold Spring Harbor Press, Cold Spring Harbor, pp 22–83

    Google Scholar 

  • Emlen D, Nijhout H (1999) Hormonal control of male horn length dimorphism in the dung beetle Onthophagus taurus (Coleoptera: Scarabaeidae). J Insect Physiol 45:45–53

    Article  PubMed  CAS  Google Scholar 

  • Enders F (1976) Size, food-finding, and Dyar’s constant. Envir Entomol 5:1–10

    Google Scholar 

  • Erezyilmaz D, Riddiford L, Truman J (2004) Juvenile hormone acts at embryonic molts and induces the nymphal cuticle in the direct-developing cricket. Dev Genes Evol 214:313–323

    Article  PubMed  CAS  Google Scholar 

  • Escher S, Rasmuson-Lestander Å (1999) The Drosophila glucose transporter gene: cDNA sequence, phylogenetic comparisons, analysis of functional sites and secondary structures. Hereditas 130:95–103

    Article  PubMed  CAS  Google Scholar 

  • Evans J, Wheeler D (1999) Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. Proc Natl Acad Sci USA 96:5575–5580

    Article  PubMed  CAS  Google Scholar 

  • Evans J, Wheeler D (2000) Expression profiles during honeybee caste determination. Genome Biology 2:research0001.1 - research0001.6

    Google Scholar 

  • Freeman J (1980) Molt increment, molt cycle duration, and tissue growth in Palaemonetes pugio Holthuis larvae. J Exp Mar Biol Ecol 143:47–71

    Article  Google Scholar 

  • Freeman J, Costlow J (1979) Hormonal control of apolysis in barnacle mantle tissue epidermis, in vitro. J Exp Zool 210:333–345

    Article  CAS  Google Scholar 

  • Fujishita M, Ishizaki H (1982) Temporal organization of endocrine events in relation to the circadian clock during larval-pupal development in Samia cynthia ricini. J Insect Physiol 28:77–84

    Article  CAS  Google Scholar 

  • Fujiwara H, Jindra M, Newitt R, Palli S, Hiruma K, Riddiford L (1995) Cloning of an ecdysone receptor homolog from Manduca sexta and the developmental profile of its mRNA in wings. Insect Biochem Mol Biol 25:845–856

    Article  PubMed  CAS  Google Scholar 

  • Fusco G, Garland JT, Hunt G, Hughes NC (2012) Developmental trait evolution in trilobites. Evolution 66:314–329

    Article  PubMed  Google Scholar 

  • Futahashi R, Fujiwara H (2008) Juvenile hormone regulates butterfly larval pattern switches. Science 319:1061

    Article  PubMed  CAS  Google Scholar 

  • Giray T, Giovanetti M, West-Eberhard MJ (2005) Juvenile hormone, reproduction, and worker behavior in the neotropical social wasp Polistes canadensis. Proc Natl Acad Sci USA 102:3330–3335

    Article  PubMed  CAS  Google Scholar 

  • Grant JWG, Bayly IAE (1981) Predator induction of crests in morphs of the Daphnia carinata king complex. Limnol Oceanogr 26:201–218

    Article  Google Scholar 

  • Gu S-H, Chow Y-S, Yin C-M (1997) Involvement of juvenile hormone in regulation of prothoracicotropic hormone transduction during the early last larval instar of Bombyx mori. Mol Cell Endocr 127:109–116

    Article  CAS  Google Scholar 

  • Gu S-H, Lin J-L, Lin P-L (2010) PTTH-stimulated ERK phosphorylation in prothoracic glands of the silkworm, Bombyx mori: Role of Ca2+/calmodulin and receptor tyrosine kinase. J Insect Physiol 56:93–101

    Article  PubMed  CAS  Google Scholar 

  • Gu S-H, Young S-C, Lin J-L, Lin P-L (2011) Involvement of PI3K/Akt signaling in PTTH-stimulated ecdysteroidogenesis by prothoracic glands of the silkworm, Bombyx mori. Insect Biochem Mol Biol 41:197–202

    Article  PubMed  CAS  Google Scholar 

  • Guertin D, Kim D-H, Sabatini D (2004) Growth control through the mTOR network. In: Hall MN, Raff M, Thomas G (eds) Cell growth. Control of cell size. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 193–234

    Google Scholar 

  • Gurney R (1942) The larvae of decapod Crustacea. Ray Society, London

    Google Scholar 

  • Halme A, Cheng M, Hariharan IK (2010) Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr Biol 20:458–463

    Article  PubMed  CAS  Google Scholar 

  • Hankin D, Diamond N, Mohr M, Ianelli J (1989) Growth and reproductive dynamics of adult female Dungeness crabs (Cancer magister) in northern California. J Mar Sci 46:94–108

    Google Scholar 

  • Hardie J (1980) Juvenile hormone mimics the photoperiodic apterization of the alate gynopara of aphid, Aphis fabae. Nature 286:602–604

    Article  CAS  Google Scholar 

  • Hardie J (2010) Photoperiodism in insects: aphid polypenism. In: Nelson RJ, Denlinger DL, Somers DE (eds) Photoperiodism. The biological calendar. Oxford University Press, Oxford, pp 342–363

    Google Scholar 

  • Harmatha J, Dinan L (1997) Biological activity of natural and synthetic ecdysteroids in the B11 bioassay. Arch Insect Biochem Physiol 35:219–225

    Article  PubMed  CAS  Google Scholar 

  • Hegstrom C, Riddiford L, Truman J (1998) Steroid and neuronal regulation of ecdysone receptor expression during metamorphosis of muscle in the moth, Manduca sexta. The J Neuroscience 18:1786–1794

    CAS  Google Scholar 

  • Hinsch G (1972) Some factors controlling reproduction in the spider crab, Libinia emarginata. Biol Bull 143:358–366

    Article  PubMed  CAS  Google Scholar 

  • Hinsch G (1980) Effect of mandibular organ implants upon spider crab ovary. Trans Am Microsc Soc 99:317–322

    Article  Google Scholar 

  • Hiruma K, Riddiford L (2010) Developmental expression of mRNAs for epidermal and fat body proteins and hormonally regulated transcription factors in the tobacco hornworm, Manduca sexta. J Insect Physiol 56:1390–1395

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann J, Koolman J, Karlson P, Joly P (1974) Molting hormone titer and metabolic fate of injected ecdysone during the fifth larval instar and in adults of Locusta migratoria (Orthoptera). Gen Comp Endocrinol 22:90–97

    Article  PubMed  CAS  Google Scholar 

  • Homola E, Chang E (1997) Methyl farnesoate: crustacean juvenile hormone in search of functions. Comp Biochem Physiol B: Biochem Mol Biol 117:347–356

    Article  Google Scholar 

  • Hopkins PM (2012) The eyes have it: a brief history of crustacean neuroendocrinology. Gen Comp Endocrinol 175:357–366

    Article  PubMed  CAS  Google Scholar 

  • Hopkins T, Kramer K (1992) Insect cuticle sclerotization. Annu Rev Entomol 37:273–302

    Article  CAS  Google Scholar 

  • Huet F, Ruiz C, Richards G (1995) Sequential gene activation by ecdysone in Drosophila melanogaster: the hierarchical equivalence of early and early late genes. Development 121:1195–1204

    PubMed  CAS  Google Scholar 

  • Hutchinson J, McNamara J, Houston A, Vollrath F (1997) Dyar’s Rule and the Investment Principle: optimal moulting strategies if feeding rate is size-independent and growth is discontinuous. Phil Trans R Soc B 352:11–138

    Article  Google Scholar 

  • Huxley J (1932) Problems of relative growth. Methuen, London

    Google Scholar 

  • Ikeya T, Galic M, Belawat P, Nairz K, Hafen E (2002) Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 12:1293–1300

    Article  PubMed  CAS  Google Scholar 

  • Iwami M, Furuya I, Kataoka H (1996) Bombyxin-related peptides: cDNA structure and expression in the brain of the hornworm Agrius convoluvuli. Insect Biochem Mol Biol 26:25–32

    Article  PubMed  CAS  Google Scholar 

  • Jindra M, Huang J, Malone F, Asahina M, Riddiford L (1997) Identification and mRNA developmental profiles of two ultraspiracle isoforms in the epidermis and wings of Manduca sexta. Insect Mol Biol 6:41–53

    Article  PubMed  CAS  Google Scholar 

  • Jindra M, Malone F, Hiruma K, Riddiford L (1996) Developmental profiles and ecdysteroid regulation of the mRNAs for two ecdysone receptor isoforms in the epidermis and wings of the tobacco hornworm, Manduca sexta. Dev Biol 180:258–272

    Article  PubMed  CAS  Google Scholar 

  • Johnston L, Prober D, Edgar B, Eisenman R, Gallant P (1999) Drosophila myc regulates cellular growth during development. Cell 98:779–790

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Sharp P (1997) Ultraspiracle: an invertebrate nuclear receptor for juvenile hormones. Proc Natl Acad Sci USA 94:13499–13503

    Article  PubMed  CAS  Google Scholar 

  • Joosse ENG, Veltkamp E (1969) Some aspects of growth, moulting and reproduction in five species of surface dwelling Collembola. Netherl J Zool 20:315–328

    Article  Google Scholar 

  • Karlson P, Koolman J (1973) On the metabolic fate of ecdysone and 3-dehydroecdysone in Calliphora vicina. Insect Biochem 3:409–417

    Article  CAS  Google Scholar 

  • Kataoka H, Toschi A, Li JP, Carney RL, Schooley DA, Kramer SJ (1989) Identification of an allatotropin from adult Manduca sexta. Science 243:1481–1483

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Nair K, Dyer K, Riddiford L (1987) Changes in ploidy level of epidermal cells during last larval instar of the tobacco hornworm, Manduca sexta. Development 99:137–143

    PubMed  CAS  Google Scholar 

  • Kato Y, Riddiford L (1987) The role of 20-hydroxyecdysone in stimulating epidermal mitoses during the larval-pupal transformation of the tobacco hornworm, Manduca sexta. Development 100:227–236

    CAS  Google Scholar 

  • Kawasaki H (1988) Studies on the wing disc morphogenesis according to the Bombyx metamorphosis. Spec Bull Coll Agric Utsunomiya Univ 63:1–4

    Google Scholar 

  • King-Jones K, Charles J-P, Lam G, Thummel C (2005) The ecdysone-induced DHR4 orphan nuclear receptor coordinates growth and maturation in Drosophila. Cell 121:773–784

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg CP, Zimmermann M (1992) Dyar’s rule and multivariate allometric growth in nine species of waterstriders (Heteroptera: Gerridae). J Zool 227:453–464

    Article  Google Scholar 

  • Koch P, Bückmann D (1987) Hormonal control of seasonal morphs by the timing of ecdysteroid release in Araschnia levana L. (Nymphalidae: Lepidoptera). J Insect Physiol 33:823–829

    Article  CAS  Google Scholar 

  • Kondo H, Ino M, Suzuki A, Ishizaki H, Iwami M (1996) Multiple gene copies for bombyxin, an insulin-related peptide of the silkmoth Bombyx mori: structural signs for gene rearrangement and duplication responsible for generation of multiple molecular forms of bombyxin. J Mol Biol 259:926–937

    Article  PubMed  CAS  Google Scholar 

  • Kopec S (1917) Experiments in metamorphosis of insects. Bull Int Acad Cracov B:57–60

    Google Scholar 

  • Kopec S (1922) Studies on the necessity of the brain for the inception of insect metamorphosis. Biol Bull 42:323–342

    Article  Google Scholar 

  • Koyama T, Syropyatova M, Riddiford L (2008) Insulin/IGF signaling regulates the change in commitment in imaginal discs and primordia by overriding the effect of juvenile hormone. Dev Biol 324:258–265

    Article  PubMed  CAS  Google Scholar 

  • Kozma SC, Thomas G (2002) Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K. BioEssays 24:65–71

    Article  PubMed  CAS  Google Scholar 

  • Kramer SJ, Toschi A, Miller CA, Kataoka H, Quistad GB, Li JP, Carney RL, Schooley DA (1991) Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proc Natl Acad Sci USA 88:9458–9462

    Article  PubMed  CAS  Google Scholar 

  • Kremen C (1989) Patterning during pupal commitment of the epidermis in the butterfly, Precis coenia: the role of intercellular communication. Dev Biol 133:336–347

    Article  PubMed  CAS  Google Scholar 

  • Kremen C, Nijhout H (1989) Juvenile hormone controls the onset of pupal commitment in the imaginal disks and epidermis of Precis coenia (Lepidoptera: Nymphalidae). J Insect Physiol 35:603–612

    Article  CAS  Google Scholar 

  • Kremen C, Nijhout H (1998) Control of pupal commitment in the imaginal disks of Precis coenia (Lepidoptera: Nymphalidae). J Insect Physiol 44:287–296

    Article  PubMed  CAS  Google Scholar 

  • Krishnakumaran A, Schneiderman HA (1969) Induction of molting in crustacea by an insect molting hormone. Gen Comp Endocrinol 12:515–518

    Article  PubMed  CAS  Google Scholar 

  • Laufer H, Biggers W (2001) Unifying concepts learned from methyl farnesoate for invertebrate reproduction and post-embryonic development. Am Zool 41:442–457

    Article  CAS  Google Scholar 

  • Laufer H, Demir N, Pan X, Stuart J, Ahl J (2005) Methyl farnesoate controls adult male morphogenesis in the crayfish, Procambarus clarkii. J Insect Physiol 51:379–384

    Article  PubMed  CAS  Google Scholar 

  • Laufer H, Landau M, Homola E, Borst D (1987) Methyl farnesoate: Its site of synthesis and regulation of secretion in a juvenile crustacean. Insect Biochem 17:1129–1131

    Article  CAS  Google Scholar 

  • Layalle S, Arquier N, Léopold P (2008) The TOR pathway couples nutrition and developmental timing in Drosophila. Dev Cell 15:568–577

    Article  PubMed  CAS  Google Scholar 

  • Lester DS, Gilbert LI (1987) Characterization of acetylcholinesterase activity in the larval brain of Manduca sexta. Insect Biochem 17:99–109

    Article  CAS  Google Scholar 

  • Locke M (1970) The molt/intermolt cycle in the epidermis and other tissues of an insect Calpodes ethlius (Lepidoptera, Hesperiidae). Tissue Cell 2:197–223

    Article  PubMed  CAS  Google Scholar 

  • Luscher M (1972) Environmental control of juvenile hormone (JH) secretion and caste differentiation in termites. Gen Comp Endocrinol 3(Suppl):509–514

    Article  Google Scholar 

  • Mansfield SG, Cammer S, Alexander SC, Muehleisen DP, Gray RS, Tropsha A, Bollenbacher WE (1998) Molecular cloning and characterization of an invertebrate cellular retinoic acid binding protein. Proc Natl Acad Sci USA 95:6825–6830

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Henderson G, Liu Y, Laine RA (2005) Formosan subterranean termite (Isoptera: Rhinotermitidae) soldiers regulate juvenile hormone levels and caste differentiation in workers. Ann Entom Soc Am 98:340–345

    Article  CAS  Google Scholar 

  • Masumura M, Satake S, Saegusa H, Mizoguchi A (2000) Glucose stimulates the release of bombyxin, an insulin-related peptide of the silkworm Bombyx mori. Gen Comp Endocrinol 118:393–399

    Article  PubMed  CAS  Google Scholar 

  • Mirth C, Truman J, Riddiford L (2005) The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr Biol 15:1796–1807

    Article  PubMed  CAS  Google Scholar 

  • Mitsui T, Riddiford L (1976) Pupal cuticle formation by Manduca sexta epidermis in vitro: Patterns of ecdysone sensitivity. Dev Biol 54:172–186

    Article  PubMed  CAS  Google Scholar 

  • Mittler TE, Nassar SG, Staal GB (1976) Wing development and parthenogenesis induced in progenies of kinoprene-treated gynoparae of Aphis fabae and Myzus persicae. J Insect Physiol 22:1717–1725

    Article  CAS  Google Scholar 

  • Miura K, Oda M, Makita S, Chinzei Y (2005) Characterization of the Drosophila Methoprene-tolerant gene product. FEBS J 272:1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi A, Ishizaki H (1984) Circadian clock controlling gut-purge rhythm of the saturniid Samia cynthia ricini: its characterization and entrainment mechanism. J Comp Physiol A: Neuroethol Sens Neur Behav Physiol 155:639–647

    Article  Google Scholar 

  • Nakatsuji T, Lee C-Y, Watson R (2009) Crustacean molt-inhibiting hormone: Structure, function, and cellular mode of action. Comp Biochem Physiol A: Mol Integr Physiol 152:139–148

    Article  CAS  Google Scholar 

  • Nakatsuji T, Sonobe H (2004) Regulation of ecdysteroid secretion from the Y-organ by molt-inhibiting hormone in the American crayfish, Procambarus clarkii. Gen Comp Endocrinol 135:358–364

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuji T, Sonobe H, Watson R (2006) Molt-inhibiting hormone-mediated regulation of ecdysteroid synthesis in Y-organs of the crayfish (Procambarus clarkii): involvement of cyclic GMP and cyclic nucleotide phosphodiesterase. Mol Cell Endocr 253:76–82

    Article  CAS  Google Scholar 

  • Nijhout H (1975a) Axonal pathways in the brain-retrocerebral neuroendocrine complex of Manduca sexta (L.) (Lepidoptera: Sphingidae). Int J Insect Morphol Embryol 4:529–538

    Article  Google Scholar 

  • Nijhout H (1975b) A threshold size for metamorphosis in the tobacco hornworm, Manduca sexta (L.). Biol Bull 149:214–225

    Article  PubMed  CAS  Google Scholar 

  • Nijhout H (1979) Stretch-induced moulting in Oncopeltus fasciatus. J Insect Physiol 25:277–282

    Article  Google Scholar 

  • Nijhout H (1984) Abdominal stretch reception in Dipetalogaster maximus (Hemiptera: Reduviidae). J Insect Physiol 30:629–633

    Article  Google Scholar 

  • Nijhout H (1994) Insect hormones. Princeton University Press, Princeton

    Google Scholar 

  • Nijhout H (1999) Control mechanisms of polyphenic development in insects. Bioscience 49:181–192

    Article  Google Scholar 

  • Nijhout H (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5:9–18

    Article  PubMed  Google Scholar 

  • Nijhout H, Davidowitz G, Roff D (2006) A quantitative analysis of the mechanism that controls body size in Manduca sexta. J Biol 5:16

    Article  PubMed  CAS  Google Scholar 

  • Nijhout H, Grunert L (2002) Bombyxin is a growth factor for wing imaginal disks in Lepidoptera. Proc Natl Acad Sci USA 99:15446–15450

    Article  PubMed  CAS  Google Scholar 

  • Nijhout H, Grunert L (2010) The cellular and physiological mechanism of wing-body scaling in Manduca sexta. Science 330:1693–1695

    Article  PubMed  CAS  Google Scholar 

  • Nijhout H, Smith W, Schachar I, Subramanian S, Tobler A, Grunert L (2007) The control of growth and differentiation of the wing imaginal disks of Manduca sexta. Dev Biol 302:569–576

    Article  PubMed  CAS  Google Scholar 

  • Nijhout H, Wheeler D (1982) Juvenile hormone and the physiological basis of insect polymorphisms. Quart Rev Biol 57:109–133

    Article  CAS  Google Scholar 

  • Nijhout H, Williams C (1974) Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): cessation of juvenile hormone secretion as a trigger for pupation. J Exp Biol 61:493–501

    PubMed  CAS  Google Scholar 

  • Oda S, Kato Y, Watanabe H, Tatarazako N, Iguchi T (2011) Morphological changes in Daphnia galeata induced by a crustacean terpenoid hormone and its analog. Envir Toxicol Chem 30:232–238

    Article  CAS  Google Scholar 

  • Oldham S, Hafen E (2003) Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol 13:79–85

    Article  PubMed  CAS  Google Scholar 

  • Oldham S, Stocker H, Laffargue M, Wittwer F, Wymann M, Hafen E (2002) The Drosophila insulin/IGF receptor controls growth and size by modulating PtdInsP(3) levels. Development 129:4103–4109

    PubMed  CAS  Google Scholar 

  • Pratt GE, Farnsworth DE, Siegel NR, Fok KF, Feyereisen R (1989) Identification of an allatostatin from adult Diploptera punctata. Biochem Biophys Res Comm 163:1243–1247

    Article  PubMed  CAS  Google Scholar 

  • Pratten D (1980) Growth in the crayfish Austropotamobius pallipes (Crustacea: Astacidae). Freshwater Biol 10:401–402

    Article  Google Scholar 

  • Preuss K, Nijhout H (2009) The importance of threshold size for the initiation of metamorphosis in the insect Tribolium castaneum. Integr Comp Biol 49:E291–E291

    Article  CAS  Google Scholar 

  • Quennedey A, Aribi N, Everaerts C, Delbecque J-P (1995) Postembryonic development of Zophobas atratus Fab. (Coleoptera: Tenebrionidae) under crowded or isolated conditions and effects of juvenile hormone analogue applications. J Insect Physiol 41:143–152

    Article  CAS  Google Scholar 

  • Rachinsky A, Hartfelder K (1990) Corpora allata activity, a prime regulating element for caste-specific juvenile hormone titre in honey bee larvae (Apis mellifera carnica). J Insect Physiol 36:189–194

    Article  CAS  Google Scholar 

  • Rankin M, Riddiford L (1977) Hormonal control of migratory flight in Oncopeltus fasciatus: The effects of the corpus cardiacum, corpus allatum, and starvation on migration and reproduction. Gen Comp Endocrinol 33:309–321

    Article  PubMed  CAS  Google Scholar 

  • Redfern C (1983) Ecdysteroid synthesis by the ring gland of Drosophila melanogaster during late-larval, prepupal and pupal development. J Insect Physiol 29:65–71

    Article  CAS  Google Scholar 

  • Rewitz K, Yamanaka N, Gilbert L, O’Connor M (2009) The insect neuropeptide PTTH activates receptor tyrosine kinase Torso to initiate metamorphosis. Science 326:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Reynolds B, Laynes R, Ögmundsdóttir M, Boyd C, Goberdhan D (2007) Amino acid transporters and nutrient-sensing mechanisms: new targets for treating insulin-linked disorders? Biochem Soc Trans 35:1215–1217

    Article  PubMed  CAS  Google Scholar 

  • Riddiford L (1978) Ecdysone-induced change in cellular commitment of the epidermis of the tobacco hornworm, Manduca sexta, at the initiation of metamorphosis. Gen Comp Endocrinol 34:438–446

    Article  PubMed  CAS  Google Scholar 

  • Riddiford L (1981) Hormonal control of epidermal cell development. Am Zool 21:751–762

    CAS  Google Scholar 

  • Riddiford L (1996) Juvenile hormone: The status of its “status quo” action. Arch Insect Biochem Physiol 32:271–286

    Article  PubMed  CAS  Google Scholar 

  • Riddiford L (2011) When is weight critical? J Exp Biol 214:1613–1615

    Article  PubMed  Google Scholar 

  • Riddiford L, Ashburner M (1991) Effects of juvenile hormone mimics on larval development and metamorphosis of Drosophila melanogaster. Gen Comp Endocrinol 82:172–183

    Article  PubMed  CAS  Google Scholar 

  • Riddiford L, Cherbas P, Truman J (2000) Ecdysone receptors and their biological actions. In: Litwack G (ed) Vitamins and hormones Vol 60. Academic Press, San Diego, pp 1–73

    Chapter  Google Scholar 

  • Robinson GE (1987) Regulation of honey bee age polyethism by juvenile hormone. Behav Ecol Sociobiol 20:329–338

    Article  Google Scholar 

  • Roer R, Dillaman R (1984) The structure and calcification of the crustacean cuticle. Am Zool 24:893–909

    CAS  Google Scholar 

  • Rohdendorf EB, Watson JAL (1969) The control of reproductive cycles in the female firebrat, Lepismodes inquilinus. J Insect Physiol 15:2085–2101

    Article  CAS  Google Scholar 

  • Röller H, Dahm KH, Sweely CC, Trost BM (1967) The structure of the juvenile hormone. Angewandte Chemie (Int Ed) 6:179–180

    Article  Google Scholar 

  • Rountree D, Bollenbacher W (1984) Juvenile hormone regulates ecdysone secretion through inhibition of PTTH release. Am Zool 24:A31–A31

    Google Scholar 

  • Rountree D, Bollenbacher W (1986) The release of the prothoracicotropic hormone in the tobacco hornworm, Manduca sexta, is controlled intrinsically by juvenile hormone. J Exp Biol 120:41–58

    PubMed  CAS  Google Scholar 

  • Rountree D, Nijhout H (1995) Hormonal control of a seasonal polyphenism in Precis coenia (Lepidoptera: Nymphalidae). J Insect Physiol 41:987–992

    Article  CAS  Google Scholar 

  • Rulifson EJ, Kim SK, Nusse R (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296:1118–1120

    Article  PubMed  CAS  Google Scholar 

  • Rybczynski R, Gilbert L (2003) Prothoracicotropic hormone stimulated extracellular signal-regulated kinase (ERK) activity: the changing roles of Ca2+- and cAMP-dependent mechanisms in the insect prothoracic glands during metamorphosis. Mol Cell Endocr 205:159–168

    Article  CAS  Google Scholar 

  • Satake S, Masumura M, Ishizaki H, Nagata K, Kataoka H, Suzuki A, Mizoguchi * (1997) Bombyxin, an insulin-related peptide of insects, reduces the Major storage carbohydrates in the silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 118:349–357

    Google Scholar 

  • Schneiderman HA, Gilbert LI (1964) Control of growth and development in insects. Science 143:325–333

    Article  PubMed  CAS  Google Scholar 

  • Schubiger M, Tomita S, Sung C, Robinow S, Truman J (2003) Isoform specific control of gene activity in vivo by the Drosophila ecdysone receptor. Mech Dev 120:909–918

    Article  PubMed  CAS  Google Scholar 

  • Shafiei M, Moczek A, Nijhout H (2001) Food availability controls the onset of metamorphosis in the dung beetle Onthophagus taurus (Coleoptera: Scarabaeidae). Physiol Entom 26:173–180

    Article  Google Scholar 

  • Shirai Y, Shimazaki K, Iwasaki T, Matsubara F, Aizono Y (1995) The in vitro release of prothoracicotropic hormone (PTTH) from the brain-corpus cardiacum-corpus allatum complex of silkworm, Bombyx mori. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 110:143–148

    Article  Google Scholar 

  • Shorter J, Tibbetts E (2009) The effect of juvenile hormone on temporal polyethism in the paper wasp Polistes dominulus. Insectes Soc 56:7–13

    Article  Google Scholar 

  • Smagghe G, Degheele D (1995) Biological-activity and receptor-binding of ecdysteroids and the ecdysteroid agonists RH-5849 and RH-5992 in imaginai wing discs of Spodoptera exigua (Lepidoptera, Noctuidae). Eur J Entomol 92:333–340

    CAS  Google Scholar 

  • Smith K (1991) The effects of temperature and daylength on the rosa polyphenism in the buckeye butterfly, Precis coenia (Lepidoptera: Nymphalidae). J Research on the Lepidoptera 30:237–244

    Google Scholar 

  • Smith W, Rybczynski R (2012) Protoracicotropic hormone. In: Gilbert LI (ed) Insect endocrinology. Academic Press, New York, pp 1–61

    Chapter  Google Scholar 

  • Srivastava US, Gilbert LI (1969) The influence of juvenile hormone on the metamorphosis of Sarcophaga bullata. J Insect Physiol 15:177–189

    Article  CAS  Google Scholar 

  • Talbot W, Swyryd E, Hogness D (1993) Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73:1323–1337

    Article  PubMed  CAS  Google Scholar 

  • Thompson D (1942) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • Thummel C (1995) From embryogenesis to metamorphosis: The regulation and function of Drosophila nuclear receptor superfamily members. Cell 83:871–877

    Article  PubMed  CAS  Google Scholar 

  • Thummel C (2001) Molecular mechanisms of developmental timing in C. elegans and Drosophila. Dev Cell 1:453–465

    Article  PubMed  CAS  Google Scholar 

  • Tobler A, Nijhout H (2010) A switch in the control of growth of the wing imaginal disks of Manduca sexta. PLoS ONE 5:e10723. doi:10.1371/journal.pone.0010723

    Article  PubMed  CAS  Google Scholar 

  • Truman J (1972) Physiology of insect rhythms. 1, Circadian organization of the endocrine events underlying the molting cycle of larval tobacco hornworms. J Exp Biol 57:805–820

    CAS  Google Scholar 

  • Truman J, Riddiford L (1974) Physiology of insect rhythms. 3. The temporal organization of the endocrine events underlying pupation of the tobacco hornworm. J Exp Biol 60:371–382

    PubMed  CAS  Google Scholar 

  • Truman J, Talbot W, Fahrbach S, Hogness D (1994) Ecdysone receptor expression in the CNS correlates with stage-specific responses to ecdysteroids during Drosophila and Manduca development. Development 120:219–234

    PubMed  CAS  Google Scholar 

  • Tsukimura B, Borst DW (1992) Regulation of methyl farnesoate in the hemolymph and mandibular organ of the lobster, Homarus americanus. Gen Comp Endocrinol 86:297–303

    Article  PubMed  CAS  Google Scholar 

  • Wainwright G, Webster S, Rees H (1999) Involvement of adenosine cyclic-3-monophosphate in the signal transduction pathway of mandibular organ-inhibiting hormone of the edible crab, Cancer pagurus. Mol Cell Endocr 154:55–62

    Article  CAS  Google Scholar 

  • Wainwright G, Webster S, Wilkinson M, Chung J, Rees H (1996) Structure and significance of mandibular organ-inhibiting hormone in the crab, Cancer pagurus. J Biol Chem 271:12749–12754

    Article  PubMed  CAS  Google Scholar 

  • Waterman T (1960) The physiology of Crustacea. Academic Press. London

    Google Scholar 

  • Watson J (1964) Moulting and reproduction in the adult firebrat, Thermobia domestica (Packard) (Thysanura, Lepismatidae) - I. The moulting cycle and its control. J Insect Physiol 10:305–317

    Article  CAS  Google Scholar 

  • Wheeler D (1991) The developmental basis of worker caste polymorphism in ants. Am Nat 138:1218–1238

    Article  Google Scholar 

  • Wheeler D, Buck N, Evans J (2006) Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. Insect Mol Biol 15:597–602

    Article  PubMed  CAS  Google Scholar 

  • Wheeler D, Nijhout H (1981) Soldier determination in ants: new role for juvenile hormone. Science 213:361–363

    Article  PubMed  CAS  Google Scholar 

  • Wheeler D, Nijhout H (1983) Soldier determination in Pheidole bicarinata: effect of methoprene on caste and size within castes. J Insect Physiol 29:847–854

    Article  Google Scholar 

  • Wheeler D, Nijhout H (1984) Soldier determination in Pheidole bicarinata: inhibition by adult soldiers. J Insect Physiol 30:127–135

    Article  Google Scholar 

  • Wheeler D, Nijhout H (2003) A perspective for understanding the modes of juvenile hormone action as a lipid signaling system. BioEssays 25:994–1001

    Article  PubMed  CAS  Google Scholar 

  • Wielgus JJ, Bollenbacher WE, Gilbert LI (1979) Correlations between epidermal DNA synthesis and haemolymph ecdysteroid titre during the last larval instar of the tobacco hornworm, Manduca sexta. J Insect Physiol 25:9–16

    Article  CAS  Google Scholar 

  • Wigglesworth V (1934) The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and ‘metamorphosis’. Quart J Microsc Sci 77:191–222

    Google Scholar 

  • Wigglesworth V (1936) The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus (Hemiptera). Quart J Microsc Sci 79:91–121

    Google Scholar 

  • Wigglesworth V (1940) The determination of characters at metamorphosis in Rhodnius prolixus (Hemiptera). J Exp Biol 17:201–223

    Google Scholar 

  • Wigglesworth V (1948) The functions of the corpus allatum in Rhodnius prolixus (Hemiptera). J Exptl Biol 25:1–15

    Google Scholar 

  • Williams C (1947) Physiology of insect diapause. II. Interaction between the pupal brain and prothoracic glands in the metamorphosis of the giant silkworm, Platysamia cecropia. Biol Bull 93:89–98

    Article  PubMed  CAS  Google Scholar 

  • Williams C (1948) Physiology of insect diapause. III. The prothoracic glands in the Cecropia silkworm, with special reference to their significance in embryonic and postembryonic development. Biol Bull 94:60–65

    Article  PubMed  CAS  Google Scholar 

  • Williams C (1959) The juvenile hormone. I. Endocrine activity of the corpora alata of the adult cecropia silkworm. Biol Bull 116:323–338

    Article  Google Scholar 

  • Williams C (1961) The juvenile hormone. II. Its role in the endocrine control of molting, pupation, and adult development in the Cecropia silkworm. Biol Bull 121:572–585

    Article  Google Scholar 

  • Willis J (1969) The programming of differentiation and its control by juvenile hormone in saturniids. J Embryol Exp Morphol 22:27–44

    PubMed  CAS  Google Scholar 

  • Willis J (1974) Morphogenetic action of insect hormones. Annu Rev Entomol 19:97–115

    Article  PubMed  CAS  Google Scholar 

  • Willis J (1981) Juvenile hormone: the status of status quo. Am Zool 21:763–773

    CAS  Google Scholar 

  • Wilson E (1971) The insect societies. Harvard University Press, Cambridge

    Google Scholar 

  • Wirtz P, Beetsma J (1972) Induction of caste differentiation in the honeybee (Apis mellifera) by juvenile hormone. Ent Exp Appl 15:517–520

    Article  CAS  Google Scholar 

  • Wolfgang W, Riddiford L (1981) Cuticular morphogenesis during continuous growth of the final instar larva of a moth. Tissue Cell 13:757–772

    Article  PubMed  CAS  Google Scholar 

  • Wolfgang W, Riddiford L (1986) Larval cuticular morphogenesis in the tobacco hornworm, Manduca sexta, and its hormonal regulation. Dev Biol 113:305–316

    Article  PubMed  CAS  Google Scholar 

  • Woltereck R (1909) Weitere experimentelle Untersuchungen ueber Artveraenderung, speziell über das Wesen quantitativer Artunterschiede bei Daphnien. Verh dtsch zool Ges 19:110–172

    Google Scholar 

  • Yamanaka N, Dusan Z, Kim Y-J, Adams ME, Hua Y-J, Suzuki Y, Suzuki M, Suzuki A, Satake H, Mizoguchi A, Asaoka K, Tanaka Y, Kataoka H (2006) Regulation of insect steroid hormone biosynthesis by innervating peptidergic neurons. Proc Natl Acad Sci USA 103:8622–8627

    Article  PubMed  CAS  Google Scholar 

  • Zeleny C (1905) Compensatory regulation. J Exp Zool 2:1–102

    Article  Google Scholar 

  • Zera A, Harshman L, Williams T (2007) Evolutionary endocrinology: the developing synthesis between endocrinology and evolutionary genetics. Ann Rev Ecol Evol Syst 38:793–817

    Article  Google Scholar 

  • Zhou B, Hiruma K, Shinoda T, Riddiford L (1998) Juvenile hormone prevents ecdysteroid-induced expression of broad complex RNAs in the epidermis of the tobacco hornworm, Manduca sexta. Dev Biol 203:233–244

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Riddiford L (2002) Broad specifies pupal development and mediates the status quo action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development 129:2259–2269

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Diana Wheeler, and to the editors, for many perceptive and helpful comments on the manuscript. This work was supported by grants from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Frederik Nijhout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frederik Nijhout, H. (2013). Arthropod Developmental Endocrinology. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_6

Download citation

Publish with us

Policies and ethics