Skip to main content

Extracellular Matrix Functions in Amphibian Gastrulation

  • Chapter
  • First Online:
Extracellular Matrix in Development

Part of the book series: Biology of Extracellular Matrix ((BEM))

  • 1282 Accesses

Abstract

The coordinated cell and tissue behaviors that give rise to the movements of gastrulation are influenced by extracellular matrix (ECM). In amphibian embryos fibronectin (FN) is first assembled into fibrils in a spatially and temporally regulated manner at the onset of gastrulation. Studies of the role of FN in amphibian gastrulation have revealed that in addition to providing a substratum for cell adhesion and migration, ECM regulates many other aspects of cell behavior. Cell–ECM interaction modulates cell–cell adhesion. FN contributes to the polarized cell protrusive activities that generate a variety of cell movements. ECM can serve as a repository for growth factors, contributing to the spatial and temporal regulation of growth factor signals. The physical properties of ECM also contribute to morphogenetic behaviors through mechanical signaling and influencing tissue force generation. ECM itself is very dynamic. It is stretched, moved, and remodeled by the cells and tissues whose behaviors it influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfandari D, Whittaker CA, DeSimone DW, Darribere T (1995) Integrin alpha v subunit is expressed on mesodermal cell surfaces during amphibian gastrulation. Dev Biol 170:249–261

    PubMed  CAS  Google Scholar 

  • Andersson M, Ostman A, Westermark B, Heldin CH (1994) Characterization of the retention motif in the C-terminal part of the long splice form of platelet-derived growth factor A-chain. J Biol Chem 269:926–930

    PubMed  CAS  Google Scholar 

  • Aota S, Nomizu M, Yamada KM (1994) The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 269:24756–24761

    PubMed  CAS  Google Scholar 

  • Arrington CB, Yost HJ (2009) Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo. Development 136:3143–3152

    PubMed  CAS  Google Scholar 

  • Ataliotis P, Symes K, Chou MM, Ho L, Mercola M (1995) PDGF signalling is required for gastrulation of Xenopus laevis. Development 121:3099–3110

    PubMed  CAS  Google Scholar 

  • Axelrod JD, Miller JR, Shulman JM, Moon RT, Perrimon N (1998) Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev 12:2610–2622

    PubMed  CAS  Google Scholar 

  • Baneyx G, Baugh L, Vogel V (2002) Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc Natl Acad Sci USA 99:5139–5143

    PubMed  CAS  Google Scholar 

  • Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, Humphries MJ, Kielty CM (2003) Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. J Biol Chem 278:34605–34616

    PubMed  CAS  Google Scholar 

  • Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, Shuttleworth CA, Humphries MJ, Couchman JR, Kielty CM (2007) Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci 120:1383–1392

    PubMed  CAS  Google Scholar 

  • Bortier H, Callebaut M, van Nueten E, Vakaet L (2001) Autoradiographic evidence for the sliding of the upper layer over the basement membrane in chicken blastoderms during gastrulation. Eur J Morphol 39:91–98

    PubMed  CAS  Google Scholar 

  • Boucaut JC, Darribere T (1983) Fibronectin in early amphibian embryos. Migrating mesodermal cells contact fibronectin established prior to gastrulation. Cell Tissue Res 234:135–145

    PubMed  CAS  Google Scholar 

  • Boucaut JC, Darribere T, Boulekbache H, Thiery JP (1984a) Prevention of gastrulation but not neurulation by antibodies to fibronectin in amphibian embryos. Nature 307:364–367

    PubMed  CAS  Google Scholar 

  • Boucaut JC, Darribere T, Poole TJ, Aoyama H, Yamada KM, Thiery JP (1984b) Biologically active synthetic peptides as probes of embryonic development: a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J Cell Biol 99:1822–1830

    PubMed  CAS  Google Scholar 

  • Boucaut JC, Darribere T, Li SD, Boulekbache H, Yamada KM, Thiery JP (1985) Evidence for the role of fibronectin in amphibian gastrulation. J Embryol Exp Morphol 89(Suppl):211–227

    PubMed  Google Scholar 

  • Bowditch RD, Hariharan M, Tominna EF, Smith JW, Yamada KM, Getzoff ED, Ginsberg MH (1994) Identification of a novel integrin binding site in fibronectin. Differential utilization by beta 3 integrins. J Biol Chem 269:10856–10863

    PubMed  CAS  Google Scholar 

  • Brieher WM, Gumbiner BM (1994) Regulation of C-cadherin function during activin induced morphogenesis of Xenopus animal caps. J Cell Biol 126:519–527

    PubMed  CAS  Google Scholar 

  • Buscemi L, Ramonet D, Klingberg F, Formey A, Smith-Clerc J, Meister JJ, Hinz B (2011) The single-molecule mechanics of the latent TGF-beta1 complex. Curr Biol 21:2046–2054

    PubMed  CAS  Google Scholar 

  • Carter SB (1967) Haptotaxis and the mechanism of cell motility. Nature 213:256–260

    PubMed  CAS  Google Scholar 

  • Chuai M, Zeng W, Yang X, Boychenko V, Glazier JA, Weijer CJ (2006) Cell movement during chick primitive streak formation. Dev Biol 296:137–149

    PubMed  CAS  Google Scholar 

  • Cooke J (1972) Properties of the primary organization field in the embryo of Xenopus laevis. 3. Retention of polarity in cell groups excised from the region of the early organizer. J Embryol Exp Morphol 28:47–56

    PubMed  CAS  Google Scholar 

  • Crump JG, Swartz ME, Kimmel CB (2004) An integrin-dependent role of pouch endoderm in hyoid cartilage development. PLoS Biol 2:E244

    PubMed  Google Scholar 

  • Czirok A, Rongish BJ, Little CD (2013) Extracellular matrix dynamics in early development. In: DeSimone DW, Mecham RP (eds) The extracellular matrix in development. Springer, Heidelberg

    Google Scholar 

  • Dale L, Slack JM (1987) Fate map for the 32-cell stage of Xenopus laevis. Development 99:527–551

    PubMed  CAS  Google Scholar 

  • Darribere T, Schwarzbauer JE (2000) Fibronectin matrix composition and organization can regulate cell migration during amphibian development. Mech Dev 92:239–250

    PubMed  CAS  Google Scholar 

  • Darribere T, Riou JF, Shi DL, Delarue M, Boucaut JC (1986) Synthesis and distribution of laminin-related polypeptides in early amphibian embryos. Cell Tissue Res 246:45–51

    PubMed  CAS  Google Scholar 

  • Darribere T, Yamada KM, Johnson KE, Boucaut JC (1988) The 140-kDa fibronectin receptor complex is required for mesodermal cell adhesion during gastrulation in the amphibian Pleurodeles waltlii. Dev Biol 126:182–194

    PubMed  CAS  Google Scholar 

  • Darribere T, Guida K, Larjava H, Johnson KE, Yamada KM, Thiery JP, Boucaut JC (1990) In vivo analyses of integrin beta 1 subunit function in fibronectin matrix assembly. J Cell Biol 110:1813–1823

    PubMed  CAS  Google Scholar 

  • Darribere T, Koteliansky VE, Chernousov MA, Akiyama SK, Yamada KM, Thiery JP, Boucaut JC (1992) Distinct regions of human fibronectin are essential for fibril assembly in an in vivo developing system. Dev Dyn 194:63–70

    PubMed  CAS  Google Scholar 

  • Davey MG, Tickle C (2007) The chicken as a model for embryonic development. Cytogenet Genome Res 117:231–239

    PubMed  CAS  Google Scholar 

  • Davidson LA (2008) Integrating morphogenesis with underlying mechanics and cell biology. Curr Top Dev Biol 81:113–133

    PubMed  Google Scholar 

  • Davidson LA, Hoffstrom BG, Keller R, DeSimone DW (2002) Mesendoderm extension and mantle closure in Xenopus laevis gastrulation: combined roles for integrin alpha(5)beta(1), fibronectin, and tissue geometry. Dev Biol 242:109–129

    PubMed  CAS  Google Scholar 

  • Davidson LA, Keller R, DeSimone DW (2004) Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis. Dev Dyn 231:888–895

    PubMed  CAS  Google Scholar 

  • Davidson LA, Marsden M, Keller R, Desimone DW (2006) Integrin alpha5beta1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr Biol 16:833–844

    PubMed  CAS  Google Scholar 

  • Davidson LA, Dzamba BD, Keller R, Desimone DW (2008) Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis. Dev Dyn 237:2684–2692

    PubMed  Google Scholar 

  • DeSimone DW, Norton PA, Hynes RO (1992) Identification and characterization of alternatively spliced fibronectin mRNAs expressed in early Xenopus embryos. Dev Biol 149:357–369

    PubMed  CAS  Google Scholar 

  • Djiane A, Riou J, Umbhauer M, Boucaut J, Shi D (2000) Role of frizzled 7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 127:3091–3100

    PubMed  CAS  Google Scholar 

  • Dunn GA, Heath JP (1976) A new hypothesis of contact guidance in tissue cells. Exp Cell Res 101:1–14

    PubMed  CAS  Google Scholar 

  • Dzamba BJ, Jakab KR, Marsden M, Schwartz MA, DeSimone DW (2009) Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization. Dev Cell 16:421–432

    PubMed  CAS  Google Scholar 

  • Fassler R, Meyer M (1995) Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev 9:1896–1908

    PubMed  CAS  Google Scholar 

  • Fey J, Hausen P (1990) Appearance and distribution of laminin during development of Xenopus laevis. Differentiation 42:144–152

    PubMed  CAS  Google Scholar 

  • Fogerty FJ, Fessler LI, Bunch TA, Yaron Y, Parker CG, Nelson RE, Brower DL, Gullberg D, Fessler JH (1994) Tiggrin, a novel Drosophila extracellular matrix protein that functions as a ligand for Drosophila alpha PS2 beta PS integrins. Development 120:1747–1758

    PubMed  CAS  Google Scholar 

  • Foty RA, Steinberg MS (2005) The differential adhesion hypothesis: a direct evaluation. Dev Biol 278:255–263

    PubMed  CAS  Google Scholar 

  • Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls alpha5beta1 function. Science 323:642–644

    PubMed  CAS  Google Scholar 

  • Gansner JM, Madsen EC, Mecham RP, Gitlin JD (2008) Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis. Dev Dyn 237:2844–2861

    PubMed  CAS  Google Scholar 

  • Gawantka V, Ellinger-Ziegelbauer H, Hausen P (1992) Beta 1-integrin is a maternal protein that is inserted into all newly formed plasma membranes during early Xenopus embryogenesis. Development 115:595–605

    PubMed  CAS  Google Scholar 

  • George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    PubMed  CAS  Google Scholar 

  • Georges-Labouesse EN, George EL, Rayburn H, Hynes RO (1996) Mesodermal development in mouse embryos mutant for fibronectin. Dev Dyn 207:145–156

    PubMed  CAS  Google Scholar 

  • Goto T, Davidson L, Asashima M, Keller R (2005) Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr Biol 15:787–793

    PubMed  CAS  Google Scholar 

  • Graeper L (1929) Die Primitiventwicklung des Huehnchens nach stereokinematographischen Untersuchungen kontrolliert durch vitale Farbmarkierung und verglichen mit der Entwicklung anderer Wirbeltiere. WilhelmRoux’ Arch Entwicklungsmech Org 116:382–429

    Google Scholar 

  • Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107:843–854

    PubMed  CAS  Google Scholar 

  • Habas R, Dawid IB, He X (2003) Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev 17:295–309

    PubMed  CAS  Google Scholar 

  • Harrisson F, Van Nassauw L, Van Hoof J, Foidart JM (1993) Microinjection of antifibronectin antibodies in the chicken blastoderm: inhibition of mesoblast cell migration but not of cell ingression at the primitive streak. Anat Rec 236:685–696

    PubMed  CAS  Google Scholar 

  • Hocking DC, Sottile J, McKeown-Longo PJ (1994) Fibronectin’s III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. J Biol Chem 269:19183–19187

    PubMed  CAS  Google Scholar 

  • Howard JE, Hirst EM, Smith JC (1992) Are beta 1 integrins involved in Xenopus gastrulation? Mech Dev 38:109–119

    PubMed  CAS  Google Scholar 

  • Hulstrand AM, Schneider PN, Houston DW (2010) The use of antisense oligonucleotides in Xenopus oocytes. Methods 51:75–81

    PubMed  CAS  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    PubMed  CAS  Google Scholar 

  • Hynes RO, Zhao Q (2000) The evolution of cell adhesion. J Cell Biol 150:F89–F96

    PubMed  CAS  Google Scholar 

  • Ibrahim H, Winklbauer R (2001) Mechanisms of mesendoderm internalization in the Xenopus gastrula: lessons from the ventral side. Dev Biol 240:108–122

    PubMed  CAS  Google Scholar 

  • Ingham KC, Brew SA, Huff S, Litvinovich SV (1997) Cryptic self-association sites in type III modules of fibronectin. J Biol Chem 272:1718–1724

    PubMed  CAS  Google Scholar 

  • Johnson KE, Darribere T, Boucaut JC (1993) Mesodermal cell adhesion to fibronectin-rich fibrillar extracellular matrix is required for normal Rana pipiens gastrulation. J Exp Zool 265:40–53

    PubMed  CAS  Google Scholar 

  • Joos TO, Whittaker CA, Meng F, DeSimone DW, Gnau V, Hausen P (1995) Integrin alpha 5 during early development of Xenopus laevis. Mech Dev 50:187–199

    PubMed  CAS  Google Scholar 

  • Julich D, Geisler R, Holley SA (2005) Integrinalpha5 and delta/notch signaling have complementary spatiotemporal requirements during zebrafish somitogenesis. Dev Cell 8:575–586

    PubMed  Google Scholar 

  • Julich D, Mould AP, Koper E, Holley SA (2009) Control of extracellular matrix assembly along tissue boundaries via Integrin and Eph/Ephrin signaling. Development 136:2913–2921

    PubMed  CAS  Google Scholar 

  • Keller R, Jansa S (1992) Xenopus Gastrulation without a blastocoel roof. Dev Dyn 195:162–176

    PubMed  CAS  Google Scholar 

  • Keller RE, Danilchik M, Gimlich R, Shih J (1985) The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J Embryol Exp Morphol 89(Suppl):185–209

    PubMed  Google Scholar 

  • Keller R, Davidson LA, Shook DR (2003) How we are shaped: the biomechanics of gastrulation. Differentiation 71:171–205

    PubMed  Google Scholar 

  • Klotzsch E, Smith ML, Kubow KE, Muntwyler S, Little WC, Beyeler F, Gourdon D, Nelson BJ, Vogel V (2009) Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc Natl Acad Sci USA 106:18267–18272

    PubMed  CAS  Google Scholar 

  • Koshida S, Kishimoto Y, Ustumi H, Shimizu T, Furutani-Seiki M, Kondoh H, Takada S (2005) Integrinalpha5-dependent fibronectin accumulation for maintenance of somite boundaries in zebrafish embryos. Dev Cell 8:587–598

    PubMed  CAS  Google Scholar 

  • Kramer KL, Yost HJ (2002) Ectodermal syndecan-2 mediates left-right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev Cell 2:115–124

    PubMed  CAS  Google Scholar 

  • Krammer A, Craig D, Thomas WE, Schulten K, Vogel V (2002) A structural model for force regulated integrin binding to fibronectin’s RGD-synergy site. Matrix Biol 21:139–147

    PubMed  CAS  Google Scholar 

  • LaFlamme SE, Thomas LA, Yamada SS, Yamada KM (1994) Single subunit chimeric integrins as mimics and inhibitors of endogenous integrin functions in receptor localization, cell spreading and migration, and matrix assembly. J Cell Biol 126:1287–1298

    PubMed  CAS  Google Scholar 

  • Lawson A, Schoenwolf GC (2001a) Cell populations and morphogenetic movements underlying formation of the avian primitive streak and organizer. Genesis 29:188–195

    PubMed  CAS  Google Scholar 

  • Lawson A, Schoenwolf GC (2001b) New insights into critical events of avian gastrulation. Anat Rec 262:238–252

    PubMed  CAS  Google Scholar 

  • Le Douarin NM (2004) The avian embryo as a model to study the development of the neural crest: a long and still ongoing story. Mech Dev 121:1089–1102

    PubMed  Google Scholar 

  • Lee CH, Gumbiner BM (1995) Disruption of gastrulation movements in Xenopus by a dominant-negative mutant for C-cadherin. Dev Biol 171:363–373

    PubMed  CAS  Google Scholar 

  • Lee G, Hynes R, Kirschner M (1984) Temporal and spatial regulation of fibronectin in early Xenopus development. Cell 36:729–740

    PubMed  CAS  Google Scholar 

  • Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152

    PubMed  CAS  Google Scholar 

  • Margadant C, Monsuur HN, Norman JC, Sonnenberg A (2011) Mechanisms of integrin activation and trafficking. Curr Opin Cell Biol 23:607–614

    PubMed  CAS  Google Scholar 

  • Marsden M, DeSimone DW (2001) Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin. Development 128:3635–3647

    PubMed  CAS  Google Scholar 

  • Marsden M, DeSimone DW (2003) Integrin-ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus. Curr Biol 13:1182–1191

    PubMed  CAS  Google Scholar 

  • Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc Natl Acad Sci USA 108:4708–4713

    PubMed  CAS  Google Scholar 

  • McMahon A, Supatto W, Fraser SE, Stathopoulos A (2008) Dynamic analyses of Drosophila gastrulation provide insights into collective cell migration. Science 322:1546–1550

    PubMed  CAS  Google Scholar 

  • McMahon A, Reeves GT, Supatto W, Stathopoulos A (2010) Mesoderm migration in Drosophila is a multi-step process requiring FGF signaling and integrin activity. Development 137:2167–2175

    PubMed  CAS  Google Scholar 

  • Mercola M, Melton DA, Stiles CD (1988) Platelet-derived growth factor A chain is maternally encoded in Xenopus embryos. Science 241:1223–1225

    PubMed  CAS  Google Scholar 

  • Miner JH (2008) Laminins and their roles in mammals. Microsc Res Tech 71:349–356

    PubMed  CAS  Google Scholar 

  • Miner JH, Cunningham J, Sanes JR (1998) Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol 143:1713–1723

    PubMed  CAS  Google Scholar 

  • Miner JH, Li C, Mudd JL, Go G, Sutherland AE (2004) Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development 131:2247–2256

    PubMed  CAS  Google Scholar 

  • Mir A, Heasman J (2008) How the mother can help: studying maternal Wnt signaling by anti-sense-mediated depletion of maternal mRNAs and the host transfer technique. Methods Mol Biol 469:417–429

    PubMed  CAS  Google Scholar 

  • Montell DJ, Goodman CS (1989) Drosophila laminin: sequence of B2 subunit and expression of all three subunits during embryogenesis. J Cell Biol 109:2441–2453

    PubMed  CAS  Google Scholar 

  • Moody SA (1987a) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev Biol 119:560–578

    PubMed  CAS  Google Scholar 

  • Moody SA (1987b) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122:300–319

    PubMed  CAS  Google Scholar 

  • Moore SW, Keller RE, Koehl MA (1995) The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis. Development 121:3131–3140

    PubMed  CAS  Google Scholar 

  • Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–328

    PubMed  CAS  Google Scholar 

  • Munoz R, Moreno M, Oliva C, Orbenes C, Larrain J (2006) Syndecan-4 regulates non-canonical Wnt signalling and is essential for convergent and extension movements in Xenopus embryos. Nat Cell Biol 8:492–500

    PubMed  CAS  Google Scholar 

  • Nagae M, Re S, Mihara E, Nogi T, Sugita Y, Takagi J (2012) Crystal structure of alpha5beta1 integrin ectodomain: atomic details of the fibronectin receptor. J Cell Biol 197:131–140

    PubMed  CAS  Google Scholar 

  • Nagel M, Winklbauer R (1999) Establishment of substratum polarity in the blastocoel roof of the Xenopus embryo. Development 126:1975–1984

    PubMed  CAS  Google Scholar 

  • Nagel M, Tahinci E, Symes K, Winklbauer R (2004) Guidance of mesoderm cell migration in the Xenopus gastrula requires PDGF signaling. Development 131:2727–2736

    PubMed  CAS  Google Scholar 

  • Nair S, Schilling TF (2008) Chemokine signaling controls endodermal migration during zebrafish gastrulation. Science 322:89–92

    PubMed  CAS  Google Scholar 

  • Nakatsuji N (1986) Presumptive mesoderm cells from Xenopus laevis gastrulae attach to and migrate on substrata coated with fibronectin or laminin. J Cell Sci 86:109–118

    PubMed  CAS  Google Scholar 

  • Nakatsuji N, Johnson KE (1983a) Comparative study of extracellular fibrils on the ectodermal layer in gastrulae of five amphibian species. J Cell Sci 59:61–70

    PubMed  CAS  Google Scholar 

  • Nakatsuji N, Johnson KE (1983b) Conditioning of a culture substratum by the ectodermal layer promotes attachment and oriented locomotion by amphibian gastrula mesodermal cells. J Cell Sci 59:43–60

    PubMed  CAS  Google Scholar 

  • Nakatsuji N, Johnson KE (1984) Experimental manipulation of a contact guidance system in amphibian gastrulation by mechanical tension. Nature 307:453–455

    PubMed  CAS  Google Scholar 

  • Nakatsuji N, Gould AC, Johnson KE (1982) Movement and guidance of migrating mesodermal cells in Ambystoma maculatum gastrulae. J Cell Sci 56:207–222

    PubMed  CAS  Google Scholar 

  • Nakaya Y, Sukowati EW, Wu Y, Sheng G (2008) RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat Cell Biol 10:765–775

    PubMed  CAS  Google Scholar 

  • Otte AP, Roy D, Siemerink M, Koster CH, Hochstenbach F, Timmermans A, Durston AJ (1990) Characterization of a maternal type VI collagen in Xenopus embryos suggests a role for collagen in gastrulation. J Cell Biol 111:271–278

    PubMed  CAS  Google Scholar 

  • Pankov R, Cukierman E, Katz BZ, Matsumoto K, Lin DC, Lin S, Hahn C, Yamada KM (2000) Integrin dynamics and matrix assembly: tensin-dependent translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesis. J Cell Biol 148:1075–1090

    PubMed  CAS  Google Scholar 

  • Park EC, Cho GS, Kim GH, Choi SC, Han JK (2011) The involvement of Eph-Ephrin signaling in tissue separation and convergence during Xenopus gastrulation movements. Dev Biol 350:441–450

    PubMed  CAS  Google Scholar 

  • Parsons MJ, Pollard SM, Saude L, Feldman B, Coutinho P, Hirst EM, Stemple DL (2002) Zebrafish mutants identify an essential role for laminins in notochord formation. Development 129:3137–3146

    PubMed  CAS  Google Scholar 

  • Petrie RJ, Doyle AD, Yamada KM (2009) Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 10:538–549

    PubMed  CAS  Google Scholar 

  • Pfaff M, Reinhardt DP, Sakai LY, Timpl R (1996) Cell adhesion and integrin binding to recombinant human fibrillin-1. FEBS Lett 384:247–250

    PubMed  CAS  Google Scholar 

  • Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33

    PubMed  CAS  Google Scholar 

  • Provenzano PP, Inman DR, Eliceiri KW, Trier SM, Keely PJ (2008) Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys J 95:5374–5384

    PubMed  CAS  Google Scholar 

  • Ramirez F, Rifkin DB (2009) Extracellular microfibrils: contextual platforms for TGFbeta and BMP signaling. Curr Opin Cell Biol 21:616–622

    PubMed  CAS  Google Scholar 

  • Ramos JW, DeSimone DW (1996) Xenopus embryonic cell adhesion to fibronectin: position-specific activation of RGD/synergy site-dependent migratory behavior at gastrulation. J Cell Biol 134:227–240

    PubMed  CAS  Google Scholar 

  • Ramos JW, Whittaker CA, DeSimone DW (1996) Integrin-dependent adhesive activity is spatially controlled by inductive signals at gastrulation. Development 122:2873–2883

    PubMed  CAS  Google Scholar 

  • Robinson EE, Zazzali KM, Corbett SA, Foty RA (2003) Alpha5beta1 integrin mediates strong tissue cohesion. J Cell Sci 116:377–386

    PubMed  CAS  Google Scholar 

  • Rorth P (2011) Whence directionality: guidance mechanisms in solitary and collective cell migration. Dev Cell 20:9–18

    PubMed  CAS  Google Scholar 

  • Rothbacher U, Laurent MN, Deardorff MA, Klein PS, Cho KW, Fraser SE (2000) Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J 19:1010–1022

    PubMed  CAS  Google Scholar 

  • Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341:126–140

    PubMed  CAS  Google Scholar 

  • Rozario T, Dzamba B, Weber GF, Davidson LA, DeSimone DW (2009) The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev Biol 327:386–398

    PubMed  CAS  Google Scholar 

  • Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF, Reinhardt DP (2009) Fibrillin assembly requires fibronectin. Mol Biol Cell 20:846–858

    PubMed  CAS  Google Scholar 

  • Sakai T, Larsen M, Yamada KM (2003) Fibronectin requirement in branching morphogenesis. Nature 423:876–881

    PubMed  CAS  Google Scholar 

  • Sanders EJ (1984) Labelling of basement membrane constituents in the living chick embryo during gastrulation. J Embryol Exp Morphol 79:113–123

    PubMed  CAS  Google Scholar 

  • Schneider PN, Hulstrand AM, Houston DW (2010) Fertilization of Xenopus oocytes using the host transfer method. J Vis Exp Nov(45):1864

    Google Scholar 

  • Schwarzbauer JE, DeSimone DW (2011) Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol 3:a005041

    PubMed  Google Scholar 

  • Shi DL, Delarue M, Darribere T, Riou JF, Boucaut JC (1987) Experimental analysis of the extension of the dorsal marginal zone in Pleurodeles waltl gastrulae. Development 100:147–161

    PubMed  CAS  Google Scholar 

  • Shih J, Keller R (1992a) Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116:901–914

    PubMed  CAS  Google Scholar 

  • Shih J, Keller R (1992b) Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Development 116:915–930

    PubMed  CAS  Google Scholar 

  • Singh P, Carraher C, Schwarzbauer JE (2010) Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol 26:397–419

    PubMed  CAS  Google Scholar 

  • Skoglund P, Keller R (2007) Xenopus fibrillin regulates directed convergence and extension. Dev Biol 301:404–416

    PubMed  CAS  Google Scholar 

  • Skoglund P, Keller R (2010) Integration of planar cell polarity and ECM signaling in elongation of the vertebrate body plan. Curr Opin Cell Biol 22:589–596

    PubMed  CAS  Google Scholar 

  • Skoglund P, Dzamba B, Coffman CR, Harris WA, Keller R (2006) Xenopus fibrillin is expressed in the organizer and is the earliest component of matrix at the developing notochord-somite boundary. Dev Dyn 235:1974–1983

    PubMed  CAS  Google Scholar 

  • Smith EM, Mitsi M, Nugent MA, Symes K (2009) PDGF-A interactions with fibronectin reveal a critical role for heparan sulfate in directed cell migration during Xenopus gastrulation. Proc Natl Acad Sci USA 106:21683–21688

    PubMed  CAS  Google Scholar 

  • Smyth N, Vatansever HS, Murray P, Meyer M, Frie C, Paulsson M, Edgar D (1999) Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 144:151–160

    PubMed  CAS  Google Scholar 

  • Spemann H (1938) Embryonic development and induction. Yale University Press, New York

    Google Scholar 

  • Steinberg MS, Takeichi M (1994) Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc Natl Acad Sci USA 91:206–209

    PubMed  CAS  Google Scholar 

  • Stephens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA, Damsky CH (1995) Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev 9:1883–1895

    PubMed  CAS  Google Scholar 

  • Stern CD (2004) Gastrulation from cells to embryos. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Stern CD (2005) The chick; a great model system becomes even greater. Dev Cell 8:9–17

    PubMed  CAS  Google Scholar 

  • Swaney KF, Huang CH, Devreotes PN (2010) Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 39:265–289

    PubMed  CAS  Google Scholar 

  • Tada M, Smith JC (2000) Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127:2227–2238

    PubMed  CAS  Google Scholar 

  • Tada M, Concha ML, Heisenberg CP (2002) Non-canonical Wnt signalling and regulation of gastrulation movements. Semin Cell Dev Biol 13:251–260

    PubMed  CAS  Google Scholar 

  • Teel AL, Yost HJ (1996) Embryonic expression patterns of Xenopus syndecans. Mech Dev 59:115–127

    PubMed  CAS  Google Scholar 

  • Trinh LA, Stainier DY (2004) Fibronectin regulates epithelial organization during myocardial migration in zebrafish. Dev Cell 6:371–382

    PubMed  CAS  Google Scholar 

  • Urbano JM, Torgler CN, Molnar C, Tepass U, Lopez-Varea A, Brown NH, de Celis JF, Martin-Bermudo MD (2009) Drosophila laminins act as key regulators of basement membrane assembly and morphogenesis. Development 136:4165–4176

    PubMed  CAS  Google Scholar 

  • Veeman MT, Nakatani Y, Hendrickson C, Ericson V, Lin C, Smith WC (2008) Chongmague reveals an essential role for laminin-mediated boundary formation in chordate convergence and extension movements. Development 135:33–41

    PubMed  CAS  Google Scholar 

  • Voiculescu O, Bertocchini F, Wolpert L, Keller RE, Stern CD (2007) The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449:1049–1052

    PubMed  CAS  Google Scholar 

  • von der Hardt S, Bakkers J, Inbal A, Carvalho L, Solnica-Krezel L, Heisenberg CP, Hammerschmidt M (2007) The Bmp gradient of the zebrafish gastrula guides migrating lateral cells by regulating cell-cell adhesion. Curr Biol 17:475–487

    PubMed  Google Scholar 

  • Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM (2000) Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405:81–85

    PubMed  CAS  Google Scholar 

  • Weber GF, Bjerke MA, DeSimone DW (2012) A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell 22:104–115

    PubMed  CAS  Google Scholar 

  • Wei Y, Mikawa T (2000) Formation of the avian primitive streak from spatially restricted blastoderm: evidence for polarized cell division in the elongating streak. Development 127:87–96

    PubMed  CAS  Google Scholar 

  • Williams M, Burdsal C, Periasamy A, Lewandoski M, Sutherland A (2012) Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn 241:270–283

    PubMed  Google Scholar 

  • Winklbauer R (1990) Mesodermal cell migration during Xenopus gastrulation. Dev Biol 142:155–168

    PubMed  CAS  Google Scholar 

  • Winklbauer R (1998) Conditions for fibronectin fibril formation in the early Xenopus embryo. Dev Dyn 212:335–345

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Keller RE (1996) Fibronectin, mesoderm migration, and gastrulation in Xenopus. Dev Biol 177:413–426

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Nagel M (1991) Directional mesoderm cell migration in the Xenopus gastrula. Dev Biol 148:573–589

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Schurfeld M (1999) Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus. Development 126:3703–3713

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Selchow A (1992) Motile behavior and protrusive activity of migratory mesoderm cells from the Xenopus gastrula. Dev Biol 150:335–351

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Stoltz C (1995) Fibronectin fibril growth in the extracellular matrix of the Xenopus embryo. J Cell Sci 108(Pt 4):1575–1586

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Selchow A, Nagel M, Angres B (1992) Cell interaction and its role in mesoderm cell migration during Xenopus gastrulation. Dev Dyn 195:290–302

    PubMed  CAS  Google Scholar 

  • Wipff PJ, Hinz B (2008) Integrins and the activation of latent transforming growth factor beta1 – an intimate relationship. Eur J Cell Biol 87:601–615

    PubMed  CAS  Google Scholar 

  • Woods A, Couchman JR (2001) Syndecan-4 and focal adhesion function. Curr Opin Cell Biol 13:578–583

    PubMed  CAS  Google Scholar 

  • Wu C, Keivens VM, O’Toole TE, McDonald JA, Ginsberg MH (1995) Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell 83:715–724

    PubMed  CAS  Google Scholar 

  • Yang JT, Hynes RO (1996) Fibronectin receptor functions in embryonic cells deficient in alpha 5 beta 1 integrin can be replaced by alpha V integrins. Mol Biol Cell 7:1737–1748

    PubMed  CAS  Google Scholar 

  • Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–1105

    PubMed  CAS  Google Scholar 

  • Yang JT, Bader BL, Kreidberg JA, Ullman-Cullere M, Trevithick JE, Hynes RO (1999) Overlapping and independent functions of fibronectin receptor integrins in early mesodermal development. Dev Biol 215:264–277

    PubMed  CAS  Google Scholar 

  • Yang X, Dormann D, Munsterberg AE, Weijer CJ (2002) Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev Cell 3:425–437

    PubMed  CAS  Google Scholar 

  • Yang X, Chrisman H, Weijer CJ (2008) PDGF signalling controls the migration of mesoderm cells during chick gastrulation by regulating N-cadherin expression. Development 135:3521–3530

    PubMed  CAS  Google Scholar 

  • Yen WW, Williams M, Periasamy A, Conaway M, Burdsal C, Keller R, Lu X, Sutherland A (2009) PTK7 is essential for polarized cell motility and convergent extension during mouse gastrulation. Development 136:2039–2048

    PubMed  CAS  Google Scholar 

  • Zamir EA, Rongish BJ, Little CD (2008) The ECM moves during primitive streak formation–computation of ECM versus cellular motion. PLoS Biol 6:e247

    PubMed  Google Scholar 

  • Zhang Q, Magnusson MK, Mosher DF (1997) Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. Mol Biol Cell 8:1415–1425

    PubMed  CAS  Google Scholar 

  • Zhong C, Kinch MS, Burridge K (1997) Rho-stimulated contractility contributes to the fibroblastic phenotype of Ras-transformed epithelial cells. Mol Biol Cell 8:2329–2344

    PubMed  CAS  Google Scholar 

  • Zhong Y, Brieher WM, Gumbiner BM (1999) Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody. J Cell Biol 144:351–359

    PubMed  CAS  Google Scholar 

  • Zhou J, Kim HY, Davidson LA (2009) Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure. Development 136:677–688

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bette J. Dzamba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dzamba, B.J., DeSimone, D.W. (2013). Extracellular Matrix Functions in Amphibian Gastrulation. In: DeSimone, D., Mecham, R. (eds) Extracellular Matrix in Development. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35935-4_3

Download citation

Publish with us

Policies and ethics