Skip to main content

Optimal Counterfeiting Attacks and Generalizations for Wiesner’s Quantum Money

  • Conference paper
Theory of Quantum Computation, Communication, and Cryptography (TQC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7582))

Included in the following conference series:

Abstract

We present an analysis of Wiesner’s quantum money scheme, as well as some natural generalizations of it, based on semidefinite programming. For Wiesner’s original scheme, it is determined that the optimal probability for a counterfeiter to create two copies of a bank note from one, where both copies pass the bank’s test for validity, is (3/4)n for n being the number of qubits used for each note. Generalizations in which other ensembles of states are substituted for the one considered by Wiesner are also discussed, including a scheme recently proposed by Pastawski, Yao, Jiang, Lukin, and Cirac, as well as schemes based on higher dimensional quantum systems. In addition, we introduce a variant of Wiesner’s quantum money in which the verification protocol for bank notes involves only classical communication with the bank. We show that the optimal probability with which a counterfeiter can succeed in two independent verification attempts, given access to a single valid n-qubit bank note, is \((3/4+\sqrt{2}/8)^n\). We also analyze extensions of this variant to higher-dimensional schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: Quantum copy-protection and quantum money. In: Proceedings of the 24th Annual IEEE Conference on Computational Complexity, pp. 229–242 (2009)

    Google Scholar 

  2. Aaronson, S.: On the security of private-key quantum money (in preparation, 2012)

    Google Scholar 

  3. Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing (2012)

    Google Scholar 

  4. Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in the quantum world. In: Proceedings of the 22nd Annual IEEE Conference on Computational Complexity, pp. 129–140 (2007)

    Google Scholar 

  5. Audenaert, K., De Moor, B.: Optimizing completely positive maps using semidefinite programming. Physical Review A 65, 30302 (2002)

    Article  Google Scholar 

  6. Bennett, C., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179 (1984)

    Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

  8. Bruß, D., Cinchetti, M., D’Ariano, G., Macchiavello, C.: Phase covariant quantum cloning. Physical Review A 62, 012302 (2000)

    Article  Google Scholar 

  9. Bužek, V., Hillery, M.: Quantum copying: Beyond the no-cloning theorem. Physical Review A 54(3), 1844–1852 (1996)

    Article  MathSciNet  Google Scholar 

  10. Cerf, N., Fiurášek, J.: Optical quantum cloning. Progress in Optics, ch.6, vol. 49, pp. 455–545. Elsevier (2006)

    Google Scholar 

  11. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra and Its Applications 10(3), 285–290 (1975)

    Article  MATH  Google Scholar 

  12. de Klerk, E.: Aspects of Semidefinite Programming – Interior Point Algorithms and Selected Applications. Applied Optimization, vol. 65. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  13. Eggeling, T., Werner, R.: Separability properties of tripartite states with U ⊗ U ⊗ U symmetry. Physical Review A 63(4), 042111 (2001)

    Google Scholar 

  14. Eldar, Y., Megretski, A., Verghese, G.: Designing optimal quantum detectors via semidefinite programming. IEEE Transactions on Information Theory 49(4), 1007–1012 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum money from knots. Available as arXiv.org e-Print 1004.5127 (2010)

    Google Scholar 

  16. Gavinsky, D.: Quantum money with classical verification. Available as arXiv.org e-Print 1109.0372 (2011)

    Google Scholar 

  17. Gottesman, D.: Uncloneable encryption. Available as arXiv.org e-Print quant-ph/0210062 (2002)

    Google Scholar 

  18. Gutoski, G., Watrous, J.: Toward a general theory of quantum games. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 565–574 (2007)

    Google Scholar 

  19. Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3(4), 275–278 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lo, H., Spiller, T., Popescu, S.: Introduction to Quantum Computation and Information. World Scientific Publishing Company (1998)

    Google Scholar 

  21. Lovász, L.: Semidefinite programs and combinatorial optimization. Recent Advances in Algorithms and Combinatorics (2003)

    Google Scholar 

  22. Lutomirski, A.: An online attack against Wiesner’s quantum money. Available as arXiv.org e-Print 1010.0256 (2010)

    Google Scholar 

  23. Lutomirski, A., Aaronson, S., Farhi, E., Gosset, D., Hassidim, A., Kelner, J., Shor, P.: Breaking and making quantum money: toward a new quantum cryptographic protocol. In: Proceedings of Innovations in Computer Science (ICS), pp. 20–31 (2010)

    Google Scholar 

  24. Mayers, D.: Unconditional security in quantum cryptography. Journal of the ACM 48, 351–406 (2001)

    Article  MathSciNet  Google Scholar 

  25. Mittal, R., Szegedy, M.: Product Rules in Semidefinite Programming. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 435–445. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Molina, A., Watrous, J.: Hedging bets with correlated quantum strategies. Available as arXiv.org e-Print 1104.1140 (2011)

    Google Scholar 

  27. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  28. Pastawski, F., Yao, N.Y., Jiang, L., Lukin, M.D., Cirac, J.I.: Unforgeable noise-tolerant quantum tokens. Available as arXiv.org e-Print 1112.5456 (2011)

    Google Scholar 

  29. Renes, J., Blume-Kohout, R., Scott, A., Caves, C.: Symmetric informationally complete quantum measurements. Journal of Mathematical Physics 45, 2171–2180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shor, P., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Physical Review Letters 85(2), 441–444 (2000)

    Article  Google Scholar 

  31. Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Physical Review Letters 106, 110506 (2011)

    Article  Google Scholar 

  32. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vidick, T., Wehner, S.: Does ignorance of the whole imply ignorance of the parts? Large violations of noncontextuality in quantum theory. Physical Review Letters 107, 030402 (2011)

    Article  Google Scholar 

  34. Watrous, J.: Lecture notes on Theory of Quantum Information (2011), http://www.cs.uwaterloo.ca/~watrous/CS766/

  35. Werner, R.: Optimal cloning of pure states. Physical Review A 58, 1827–1832 (1998)

    Article  Google Scholar 

  36. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)

    Article  Google Scholar 

  37. Wootters, W., Zurek, W.: A single quantum state cannot be cloned. Nature 299, 802–803 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Molina, A., Vidick, T., Watrous, J. (2013). Optimal Counterfeiting Attacks and Generalizations for Wiesner’s Quantum Money. In: Iwama, K., Kawano, Y., Murao, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2012. Lecture Notes in Computer Science, vol 7582. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35656-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35656-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35655-1

  • Online ISBN: 978-3-642-35656-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics