Skip to main content

Acute Kidney Injury in Intensive Care: A Role for Backpressure?

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2013

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 2704 Accesses

Abstract

Acute kidney injury (AKI) occurs in approximately two-thirds of intensive care unit (ICU) patients [1] and is associated with increased mortality, length of stay and cost [2]. It is, therefore, essential to better understand its pathogenesis, and to prevent its occurrence. Renal hypoperfusion is thought to worsen the kidney function in situations in which the kidney is already being injured. Many experimental and clinical studies have focused on forward pressure determinants to improve mean arterial pressure (MAP) and cardiac output [3, 4]. There is, however, increasing evidence that backpressure (venous pressure) plays an important role when the kidney is under aggression. Indeed, high levels of central venous pressure (CVP) are associated with AKI suggesting that CVP can detect renal congestion. We will further discuss the potential role of renal venous congestion in the relationship between fluid overload and prognosis in critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hoste EA, Kellum JA (2006) Acute kidney injury: epidemiology and diagnostic criteria. Curr Opin Crit Care 12:531–537

    Article  PubMed  Google Scholar 

  2. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16:3365–3370

    Article  PubMed  Google Scholar 

  3. Langenberg C, Wan L, Egi M, May CN, Bellomo R (2007) Renal blood flow and function during recovery from experimental septic acute kidney injury. Intensive Care Med 33:1614–1618

    Article  PubMed  Google Scholar 

  4. Prowle JR, Molan MP, Hornsey E, Bellomo R (2012) Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation. Crit Care Med 40:1768–1776

    Article  PubMed  Google Scholar 

  5. Legrand M, Bezemer R, Kandil A, Demirci C, Payen D, Ince C (2011) The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Intensive Care Med 37:1534–1542

    Article  PubMed  Google Scholar 

  6. Legrand M, Almac E, Mik EG et al (2009) L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol 296:1109–1117

    Article  Google Scholar 

  7. Hall JE, Guyton AC, Cowley Jr AW (1977) Dissociation of renal blood flow and filtration rate autoregulation by renin depletion. Am J Physiol 232:215–221

    Google Scholar 

  8. Nejat M, Pickering JW, Devarajan P et al (2012) Some biomarkers of acute kidney injury are increased in pre-renal acute injury. Kidney Inter 81:1254–1262

    Article  CAS  Google Scholar 

  9. Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM (2012) Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg 114:640–651

    Article  PubMed  Google Scholar 

  10. Gattinoni L, Brazzi L, Pelosi P et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 16:1025–1032

    Article  Google Scholar 

  11. Legrand M, Mik EG, Balestra GM et al (2010) Fluid resuscitation does not improve renal oxygenation during hemorrhagic shock in rats. Anesthesiology 112:119–127

    Article  PubMed  Google Scholar 

  12. Legrand M, Mik EG, Johannes T, Payen D, Ince C (2008) Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med 14:502–516

    Article  PubMed  CAS  Google Scholar 

  13. Chowdhury AH, Cox EF, Francis ST, Lobo DN (2012) A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9 % saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 256:18–24

    Article  PubMed  Google Scholar 

  14. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal Syndrome. J Am Coll Cardiol 52:1527–1539

    Article  PubMed  Google Scholar 

  15. Ismail Y, Kasmikha Z, Green HL, McCullough PA (2012) Cardio-Renal Syndrome Type 1: Epidemiology, Pathophysiology and Treatment. Semin Nephrol 32:49–56

    Article  Google Scholar 

  16. Winton FR (1931) The influence of venous pressure on the isolated mammalian kidney. J Physiol 72:49–61

    PubMed  CAS  Google Scholar 

  17. Fiksen-Olsen MJ, Strick DM, Hawley H, Romero JC (1992) Renal effects of angiotensin II inhibition during increases in renal venous pressure. Hypertension 19:137–141

    Article  Google Scholar 

  18. Herrler T, Tischer A, Meyer A et al (2010) The intrinsic renal compartment syndrome: new perspectives in kidney transplantation. Transplantation 89:40–46

    Article  PubMed  Google Scholar 

  19. Tanaka M, Yoshida H, Furuhashi M et al (2011) Deterioration of renal function by chronic heart failure is associated with congestion and oxidative stress in the tubulointerstitium. Intern Med 50:2877–2887

    Article  PubMed  CAS  Google Scholar 

  20. Seeto RK, Fenn B, Rockey DC (2000) Ischemic hepatitis: clinical presentation and pathogenesis. Am J Med 109:109–113

    Article  PubMed  CAS  Google Scholar 

  21. Benes J, Chvojka J, Sykora R et al (2011) Searching for mechanisms that matter in early septic acute kidney injury: an experimental study. Crit Care 15:R256

    Article  PubMed  Google Scholar 

  22. Chvojka J, Sykora R, Krouzecky A et al (2008) Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit Care 12:R164

    Article  PubMed  Google Scholar 

  23. Park Y, Hirose R, Dang K et al (2008) Increased severity of renal ischemia reperfusion injury with venous clamping compared to arterial clamping in a rat model. Surgery 143:243–251

    Article  PubMed  Google Scholar 

  24. Kon V, Yared A, Ichikawa I (1985) Role of renal sympathetic nerves in mediating hypoperfusion of renal cortical microcirculation in experimental congestive heart failure and acute extracellular fluid volume depletion. J Clin Invest 76:1912–1920

    Google Scholar 

  25. Kastner PR, Hall JE, Guyton AC (1982) Renal hemodynamic responses to increased renal venous pressure: role of angiotensin II. Am J Physiol 243:260–264

    Google Scholar 

  26. Morsing P, Stenberg A, Casellas D et al (1992) Renal interstitial pressure and tubuloglomerular feedback control in rats during infusion of atrial natriuretic peptide (ANP). Acta Physiol Scand 146:393–398

    Article  PubMed  CAS  Google Scholar 

  27. Schrier RW (2010) Fluid administration in critically ill with acute kidney injury. Clin J Am Soc Nephrol 5:733–739

    Article  PubMed  Google Scholar 

  28. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA (2011) Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 39:259–265

    Article  PubMed  Google Scholar 

  29. Damman K, Navis G, Smilde TDJ et al (2007) Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail 9:872–878

    Article  PubMed  Google Scholar 

  30. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53:582–588

    Article  PubMed  Google Scholar 

  31. Damman K, Voors AA, Hillege HL et al (2010) Congestion in chronic systolic heart failure is related to renal dysfunction and increased mortality. Eur J Heart Fail 12:974–982

    Article  PubMed  Google Scholar 

  32. Bellomo R, Cass A, Cole L et al (2012) An observational study fluid balance and patient outcomes in the Randomized Evaluation of Normal vs. Augmented Level of Replacement Therapy trial. Crit Care Med 40:1753–1760

    Article  PubMed  Google Scholar 

  33. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL (2008) Sepsis Occurrence in Acutely Ill Patients (SOAP) Investigators: A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12:R74

    Article  PubMed  Google Scholar 

  34. Bouchard J, Soroko SB, Chertow GM et al (2009) Program to Improve Care in Acute Renal Disease (PICARD) Study Group: Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 76:422–427

    Article  PubMed  Google Scholar 

  35. Lin SM, Huang CD, Lin HC, Liu CY, Wang CH, Kuo HP (2006) A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock: a randomized controlled trial. Shock 26:551–557

    Article  PubMed  Google Scholar 

  36. Prowle JR, Chua HR, Bagshaw SM, Bellomo R (2012) Clinical review: volume of fluid resuscitation and the incidence of acute kidney injury – a systematic review. Crit Care 16:230

    Article  PubMed  Google Scholar 

  37. Nikolaou M, Parissis J, Yilmaz B, et al (2013) Liver function abnormalities, clinical profile and outcome in acute decompensated heart failure. Eur Heart J (in press)

    Google Scholar 

  38. Ganda A, Onat D, Demmer RT et al (2010) Venous congestion and endothelial cell activation in acute decompensated heart failure. Curr Heart Fail Rep 2010 7:66–74

    Article  CAS  Google Scholar 

  39. Wiedemann HP, Wheeler AP, Bernard GR et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    Article  PubMed  CAS  Google Scholar 

  40. Canaud B, Leblanc M, Leray-Moragues H, Delmas S, Klouche K, Beraud JJ (1998) Slow continuous ultrafiltration for refractory congestive heart failure. Nephrol Dial Transplant 13(Suppl 4):51–55

    Article  PubMed  Google Scholar 

  41. Felker GM, Mentz RJ (2012) Diuretics and ultrafiltration in acute decompensated heart failure. J Am Coll Cardiol 59:2145–2153

    Article  PubMed  CAS  Google Scholar 

  42. Butler J, Forman DE, Abraham WT et al (2004) Relationship between heart failure treatment and development of worsening renal function among hospitalized patients. Am Heart J 147:331–338

    Article  PubMed  Google Scholar 

  43. Hasselblad V, Gattis Stough W, Shah MR et al (2007) Relation between dose of loop diuretics and outcomes in a heart failure population: results of the ESCAPE trial. Eur J Heart Fail 9:1064–1069

    Article  PubMed  CAS  Google Scholar 

  44. Payen D, Lukaszewicz AC, Legrand M et al (2012) A multicentre study of acute kidney injury in severe sepsis and septic shock: association with inflammatory phenotype and HLA genotype. PLoS One 7:e35838

    Article  PubMed  CAS  Google Scholar 

  45. Van Biesen W, Yegenaga I, Vanholder R et al (2005) Relationship between fluid status and its management on acute renal failure. J Nephrol 18:54–60

    PubMed  Google Scholar 

  46. Nohria A, Hasselblad V, Stebbins A et al (2008) Cardiorenal interactions: Insights from the ESCAPE trial. J Am Coll Cardiol 51:1268–1274

    Google Scholar 

  47. Mullens W, Abrahams Z, Francis GS et al (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53:589–596

    Article  PubMed  Google Scholar 

  48. Guglin M, Rivero A, Matar F, Garcia M (2011) Renal dysfunction in heart failure is due to congestion but not low output. Clin Cardiol 34:113–116

    Article  PubMed  Google Scholar 

  49. Grams ME, Estrella MM, Coresh J (2011) Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol 6:966–973

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Legrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bardon, J., Legrand, M., Mebazaa, A. (2013). Acute Kidney Injury in Intensive Care: A Role for Backpressure?. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics