Skip to main content

Virtual Development of Engine ECU by Modeling Technology

  • Conference paper
  • First Online:
Proceedings of the FISITA 2012 World Automotive Congress

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 194))

  • 3797 Accesses

Abstract

Along with the evolution of vehicle electronic systems from domain-specific control to the integrated control of the entire vehicle system, ECU systems have become increasingly complicated and large-scale. This has made it difficult to set out an optimal architecture of the ECU system efficiently at the early planning stages. As well, the conventional ECU development methodology is also becoming difficult to achieve the increasingly strict requirements for safety design based on multi-ECU systems. Conventionally, optimizing electronic systems requires fabricating many prototypes and evaluating them repeatedly, but with their increasing scale, this method has become impractical. We therefore believe virtual development is a required step. Although functional-level simulators and implementation-level simulators are being used currently, these are both separate and independent. Because of this, it is necessary to introduce virtual development as a new physical-level development environment to connect functional-level and implementation-level. In terms of not only function but also safety design, virtual development has the ability to inject failures that are difficult to recreate in an actual device. Therefore we have started introducing the virtual development of ECU systems by using system level modeling and simulation technology with SystemC language which provides the concept of time. In the phase of physical-level design, because a virtual ECU system is developed by designing each functional model of system such as ADC and drive circuit and connecting these models as a system, the behavior of the whole ECU system can be verified easily without having actual devices. Therefore the optimized structure of ECU, such as microcomputer, software and peripheral LSI, can be determined efficiently at the early stages of ECU development. Safety design can also be achieved efficiently because the data transferred in the system can be changed to failure data forcibly by covering functional models with failure models. We believe that maximizing the performance of ECUs in electronic systems, and ensuring that these systems meet safety design requirements will require methods to visualize things that are difficult to visualize, and that this visualization is needed both before and after manufacturing. Virtual development of ECU systems by using system level modeling and simulation technology with SystemC language provides a useful method to achieve these requirements.

F2012-D02-004

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niimi Y, Ono T, Tsuchiya N (2012) Virtual development of engine ECU by modeling technology. [J] SAE technical paper, 2012-01-0007:1–5

    Google Scholar 

  2. Bailey B, Martin G, Piziali A (2007) ESL design and verification [M]. Morgan Kaufmann, USA

    Google Scholar 

  3. STARC (2008) TL modeling guide, 2nd edn [M] Semiconductor technology academic research center, Japan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, H., Niimi, Y., Ono, T. (2013). Virtual Development of Engine ECU by Modeling Technology. In: Proceedings of the FISITA 2012 World Automotive Congress. Lecture Notes in Electrical Engineering, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33829-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33829-8_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33828-1

  • Online ISBN: 978-3-642-33829-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics