Skip to main content

Spinodal Decomposition Kinetics of Colloid-Polymer Mixtures Including Hydrodynamic Interactions

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘12

Abstract

The phase separation dynamics of a model colloid-polymer mixture is studied by taking explicitly the hydrodynamic interactions caused by the solvent into account. Based on the studies on equilibrium phase behavior we perform a volume quench from the homogeneous region of the phase diagram deep into the region where colloid-rich and polymer-rich phases coexist. We demonstrate that the Multiparticle Collision Dynamics (MPCD) algorithm is well suited to study spinodal decomposition and present first results on the domain growth behavior of colloid-polymer mixtures in quasi two-dimensional confinement. On the one hand side we find that the boundary condition of the solvent with respect to the repulsive walls strongly influences the phase separation dynamics and on the other hand we show that the wetting behavior of the system leads to changes in the demixing pattern morphology over time and hence affects the domain growth laws.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Palberg. Crystallization kinetics of repulsive colloidal spheres. J. Phys.: Condens. Matter, 11:R323, 1999.

    Google Scholar 

  2. P. N. Pusey. Colloidal suspensions. In J. P. Hansen, D. Levesque, and J. Zinn-Justin, editors, Liquids, freezing, and glass transition, page 763, Amsterdam, 1991. North Holland.

    Google Scholar 

  3. E. Bartsch. Diffusion in concentrated colloidal suspensions and glasses. Curr. Opin. Colloid Interface Sci, 3:577, 1998.

    Article  Google Scholar 

  4. H. Löwen. Colloidal dispersions in external fields: recent developments. J. Phys.: Condens. Matter, 20:404201, 2008.

    Google Scholar 

  5. New developments in colloid science. MRS Bull. 29 (2004).

    Google Scholar 

  6. K. Binder and D. Stauffer. Theory for slowing down of relaxation and spinodal decomposition of binary-mixtures. Phys. Rev. Lett., 33:1006, 1974.

    Article  Google Scholar 

  7. I.M. Lifshitz and V.V. Slyozov. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids, 19:35, 1961.

    Article  Google Scholar 

  8. Daniel Reith, Katarzyna Bucior, Leonid Yelash, Peter Virnau, and Kurt Binder. Spinodal decomposition of polymer solutions: molecular dynamics simulations of the two-dimensional case. J. Phys.: - Condens. Matter, 24(11):115102, MAR 21 2012.

    Google Scholar 

  9. H. Furukawa. Effect of inertia on droplet growth in a fluid. Phys. Rev. A, 31:1103, 1985.

    Article  Google Scholar 

  10. S.K. Das, J. Horbach, K. Binder, and S. Puri. Molecular dynamics study of phase separation kinetics in thin films. Phys. Rev. Lett., 96:016107, 2006.

    Article  Google Scholar 

  11. Leonid Yelash, Peter Virnau, Wolfgang Paul, Kurt Binder, and Marcus Mueller. Spinodal decomposition of polymer solutions: A parallelized molecular dynamics simulation. Phys. Rev. E, 78(3, Part 1):031801, SEP 2008.

    Google Scholar 

  12. SK Das, S Puri, J Horbach, and K Binder. Spinodal decomposition in thin films: Molecular-dynamics simulations of a binary Lennard-Jones fluid mixture. Phys. Rev. E, 73(3, Part 1):031604, MAR 2006.

    Google Scholar 

  13. Michael J. A. Hore and Mohamed Laradji. Dissipative particle dynamics simulation of the interplay between spinodal decomposition and wetting in thin film binary fluids. J. Chem. Phys., 132(2):024908, JAN 14 2010.

    Google Scholar 

  14. J. Zausch, P. Virnau, J. Horbach, R. L. C. Vink, and K. Binder. Statics and dynamics of colloid-polymer mixtures near their critical point of phase separation: A computer simulation of a continuous AO model. J. Chem. Phys., 130:064906, 2009.

    Article  Google Scholar 

  15. G. Gompper, T. Ihle, K. Kroll, and R.G. Winkler. Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Adv. Poly. Sci., 221:1, 2009.

    Google Scholar 

  16. A. Malevanets and R. Kapral. Mesoscopic model for solvent dynamics. J. Chem. Phys., 110:8605, 1999.

    Article  Google Scholar 

  17. A. Malevanets and R. Kapral. Solute molecular dynamics in a mesoscale solvent. J. Chem. Phys., 112:7260, 2000.

    Article  Google Scholar 

  18. A. Malevanets and J. Yeomans. Dynamics of short polymer chains in solution. EPL, 52:231, 2000.

    Article  Google Scholar 

  19. R. L. C. Vink and J. Horbach. Grand canonical Monte Carlo simulation of a model colloid-polymer mixture: Coexistence line, critical behavior, and interfacial tension. J. Chem. Phys., 121:3253, 2004.

    Article  Google Scholar 

  20. P. Virnau and M. Müller. Calculation of free energy through successive umbrella sampling. J. Chem. Phys., 120:10925, 2004.

    Article  Google Scholar 

  21. F. Wang and D. P. Landau. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett., 86:2050, 2001.

    Article  Google Scholar 

  22. A. Winkler, D. Wilms, P. Virnau, and K. Binder. Capillary condensation in cylindrical pores: Monte Carlo study of the interplay of surface and finite size effects. J. Chem. Phys., 133:164702, 2010.

    Article  Google Scholar 

  23. G. Sutmann, R.G. Winkler, and G. Gompper. Simulating hydrodynamics of complex fluids: Multi-particle collision dynamics coupled to molecular dynamics on massively parallel computers. (in preparation).

    Google Scholar 

  24. A. Winkler, R.G. Winkler, P. Virnau, G. Gompper, and K. Binder. Multiparticle collision dynamics study of hydrodynamic mechanisms of spinodal decomposition in confined colloid-polymer mixtures. (in preparation).

    Google Scholar 

  25. H. Chen and A. Chakrabarti. Hydrodynamic effects on domain growth in off-critical polymer blends. J. Chem. Phys., 108(14):6006–6013, APR 8 1998.

    Google Scholar 

  26. B. Crist. On “pinning” domain growth in two-phase polymer liquids. Macromolecules, 29(22):7276–7279, OCT 21 1996.

    Google Scholar 

  27. J. Lauger, R. Lay, and W. Gronski. The percolation-to-cluster transition during spinodal decomposition of an off-critical polymer mixture - observation by light-scattering and optical microscopy. J. Chem. Phys., 101(8):7181–7184, OCT 15 1994.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the DFG (TR6, A5) for funding of the project. Computing resources used to test the algorithms, obtain first results and the static properties of the continuous AO model at JUROPA supercomputer in Jülich are gratefully acknowledged. Especially acknowledged are G. Gompper, R. Winkler, C. Huang and G. Sutmann for extremely helpful discussions and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Winkler, A., Virnau, P., Binder, K. (2013). Spinodal Decomposition Kinetics of Colloid-Polymer Mixtures Including Hydrodynamic Interactions. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_4

Download citation

Publish with us

Policies and ethics