Skip to main content

Electronic and Optical Excitations of Aminopyrimidine Molecules from Many-Body Perturbation Theory

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘12

Abstract

Calculations based on (occupation constrained) density functional theory using local as well as hybrid functionals to describe the electron-electron exchange and correlation are combined with many-body perturbation theory in order to determine the electronic and optical excitation properties of 5-(pentafluorophenyl)pyrimidin-2-amine, 5-(4-methoxy-2,3,5,6-tetrafluorophenyl)pyrimidin-2-amine, and 5-(4-(dimethylamino)-2,3,5,6-tetrafluorophenyl)pyrimidin-2-amine. Large quasiparticle shifts and exciton binding energies of about 4 eV are found. They cancel each other partially and thus allow for a meaningful description of the molecular optical response within the independent-particle approximation. We find a surprisingly strong influence of local-field effects as well as resonant-nonresonant coupling terms in the electron-hole Hamiltonian on the optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Rohlfing, S.G. Louie, Phys. Rev. Lett. 81, 2312 (1998)

    Article  Google Scholar 

  2. S. Albrecht, L. Reining, R. DelSole, G. Onida, Phys. Rev. Lett. 80, 4510 (1998)

    Article  Google Scholar 

  3. M. Rohlfing, Int. J. Quant. Chem. 80, 807 (2000)

    Article  Google Scholar 

  4. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

    Article  Google Scholar 

  5. P.H. Hahn, W.G. Schmidt, F. Bechstedt, Phys. Rev. B 72, 245425 (2005)

    Article  Google Scholar 

  6. W.G. Schmidt, phys. stat. sol. (b) 242, 2751 (2005)

    Google Scholar 

  7. I. Stoll, R. Brodbeck, B. Neumann, H.G. Stammler, J. Mattay, Crys. Eng. Comm. 11(2), 306 (2009)

    Article  Google Scholar 

  8. I. Stoll, R. Brockhinke, A. Brockhinke, M. Boettcher, T. Koop, H.G. Stammler, B. Neumann, A. Niemeyer, A. Huetten, J. Mattay, Chem. Materials 22(16), 4749 (2010)

    Article  Google Scholar 

  9. G. Kresse, J. Furthmüller, Comp. Mat. Sci. 6, 15 (1996)

    Article  Google Scholar 

  10. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  Google Scholar 

  11. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118(18), 8207 (2003)

    Article  Google Scholar 

  12. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  13. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  14. R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer-Verlag, Berlin, 1990)

    Book  MATH  Google Scholar 

  15. M. Preuss, W.G. Schmidt, K. Seino, J. Furthmüller, F. Bechstedt, J. Comp. Chem. 25, 112 (2004)

    Article  Google Scholar 

  16. A. Hermann, W.G. Schmidt, P. Schwerdtfeger, Phys. Rev. Lett. 100, 207403 (2008)

    Article  Google Scholar 

  17. M. Shishkin, G. Kresse, Phys. Rev. B 74, 035101 (2006)

    Article  Google Scholar 

  18. H. Ehrenreich, M.H. Cohen, Phys. Rev. 115, 786 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  19. S.L. Adler, Phys. Rev. 126, 413 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Wiser, Phys. Rev. 129, 62 (1963)

    Article  MATH  Google Scholar 

  21. V. Olevano, L. Reining, Phys. Rev. Lett. 86, 5962 (2001)

    Article  Google Scholar 

  22. F. Bechstedt, R. Del Sole, G. Cappellini, L. Reining, Solid State Commun. 84, 765 (1992)

    Article  Google Scholar 

  23. A. Riefer, F. Fuchs, C. Rödl, A. Schleife, F. Bechstedt, R. Goldhahn, Phys Rev B 84(7), 075218 (2011)

    Article  Google Scholar 

  24. W.G. Schmidt, M. Albrecht, S. Wippermann, S. Blankenburg, E. Rauls, F. Fuchs, C. Rödl, J. Furthmüller, A. Hermann, Phys. Rev. B 77, 035106 (2008)

    Article  Google Scholar 

  25. P.H. Hahn, W.G. Schmidt, K. Seino, M. Preuss, F. Bechstedt, J. Bernholc, Phys. Rev. Lett. 94, 037404 (2005)

    Article  Google Scholar 

  26. W.G. Schmidt, S. Glutsch, P.H. Hahn, F. Bechstedt, Phys. Rev. B 67, 085307 (2003)

    Article  Google Scholar 

  27. A. Ruini, M. Caldas, G. Bussi, E. Molinari, Phys. Rev. Lett 88(20) (2002)

    Google Scholar 

  28. A.Y. Golovacheva, A.N. Romanov, V.B. Sulimov, J. Phys. Chem. A 109, 3244 (2005)

    Article  Google Scholar 

  29. A. Riefer, E. Rauls, W.G. Schmidt, J. Eberhard, I. Stoll, J. Mattay, Phys Rev B 85, 165202 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the DFG as well as supercomputer time provided by the HLRS Stuttgart and the Paderborn PC2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riefer, A. et al. (2013). Electronic and Optical Excitations of Aminopyrimidine Molecules from Many-Body Perturbation Theory. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_3

Download citation

Publish with us

Policies and ethics