Skip to main content

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 663))

  • 771 Accesses

Abstract

In recent years, many procedures have been developed to analyze stochastic flow lines. Exact methods and closed-form expressions have been proposed for the analysis of closed queueing networks with exponential processing times and infinite buffer spaces. Under the assumption of exponential processing times and finite buffer spaces, many approximate methods have been introduced. Only a few approximate procedures exist which consider general processing times, of which only a fraction additionally assume finite buffer spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CONWIP = constant work-in-process.

  2. 2.

    See Tempelmeier and Kuhn (1993, p. 1).

  3. 3.

    See Hopp and Spearman (2000, p. 223).

  4. 4.

    See Bolch et al. (2006, p. 245).

  5. 5.

    See Little (1961, pp. 383ff).

  6. 6.

    See Bolch et al. (2006, pp. 384f).

  7. 7.

    See Bolch et al. (2006, pp. 410ff).

  8. 8.

    Marie’s method considers general processing times and works very well. For more details on this procedure, see Sect. 3.3.3.2 on page 35 and Marie (1979).

  9. 9.

    Although the Gordon-Newell Theorem is called a theorem, it allows the evaluation of the performance measures and is, therefore, sorted into this section.

  10. 10.

    See Bolch et al. (2006, pp. 346f).

  11. 11.

    See Baskett et al. (1975) and Bolch et al. (2006, pp. 353ff).

  12. 12.

    See Tempelmeier and Kuhn (1993, p. 76).

  13. 13.

    For a description of Marie’s method, see page 35.

  14. 14.

    See Tempelmeier and Kuhn (1993, p. 71ff).

  15. 15.

    See Sect. 3.1.

  16. 16.

    See Bolch et al. (2006, p. 388).

  17. 17.

    See Bolch et al. (2006, p. 387).

  18. 18.

    For a description of the method and implementation, see Bolch et al. (2006, pp. 410ff).

  19. 19.

    See Sect. 3.1.

  20. 20.

    See also Sauer and Chandy (1981).

  21. 21.

    See also Bolch et al. (2006, pp. 369f).

  22. 22.

    See also Bolch et al. (2006, pp. 422, 427).

  23. 23.

    For this, see Sect. 3.3.3.4.

  24. 24.

    For more information on increasing failure rates, see Marshall and Olkin (2007).

  25. 25.

    See also Bolch et al. (2006, pp. 440ff).

  26. 26.

    See also Chen, George, and Tardif (2001).

  27. 27.

    See the Markov property on page 92.

  28. 28.

    See Stewart (2009, p. 184).

  29. 29.

    See Bolch et al. (2006, pp. 463ff).

  30. 30.

    Bolch et al. (2006, p. 492).

  31. 31.

    See Altiok (1996, p. 30).

  32. 32.

    Here, ρ i (n − 1) is the probability that the server is occupied. As no blocking occurs, the probability that a job receives service equals the probability that the server is busy. In case of blocking, the utilization and the blocking probability would have to be subtracted from the mean work-in-process.

  33. 33.

    Curry and Feldman (2008, pp. 252ff).

  34. 34.

    See also Sect. 3.3.1 on pages 26ff.

  35. 35.

    Dynamic parts routing means that parts follow a probabilistic shortest-queue scheme. For details, see Yao and Buzacott (1985).

  36. 36.

    See Bolch et al. (2006, pp. 505ff).

  37. 37.

    Bottapprox is an approximate method for CQN with exponential processing times and infinite buffers, see Sect. 3.3.1 on page 26.

  38. 38.

    See Bolch et al. (2006, pp. 502–505).

  39. 39.

    See Akyildiz (1987) for details and page 41.

  40. 40.

    See Akyildiz (19871988c1989).

  41. 41.

    See Rall (1998, p. 127).

  42. 42.

    See Yao and Buzacott (1986a).

References

  • Agrawal, S., Buzen, J., & Shum, A. (1984). Response time preservation – A general technique for developing approximate algorithms for queueing networks. Association for Computing Machinery Sigmetrics Performance Evaluation Review, 12(3), 63–77.

    Google Scholar 

  • Akyildiz, I. F. (1985). Die erweiterte parametrische Analyse für geschlossene Warteschlangennetze. In Messung, Modellierung und Bewertung von Rechensystemen, 3. GI/NTG-Fachtagung (pp. 170–185), Dortmund.

    Google Scholar 

  • Akyildiz, I. F. (1987). Exact product form solution for queueing networks with blocking. IEEE Transactions on Computers, 36(1), 122–125.

    Google Scholar 

  • Akyildiz, I. F. (1988a). General closed queueing networks with blocking. In Proceedings of the 12th IFIP WG 7.3 International Symposium on Computer Performance Modelling, Measurement and Evaluation (pp. 283–303), Brussels.

    Google Scholar 

  • Akyildiz, I. F. (1988b). Mean value analysis for blocking queueing networks. IEEE Transaction on Software Engineering, 14(4), 418–428.

    Google Scholar 

  • Akyildiz, I. F. (1988c). On the exact and approximate throughput analysis of closed queueing networks with blocking. IEEE Transaction on Software Engineering, 14(1), 62–70.

    Google Scholar 

  • Akyildiz, I. F. (1989). Product form approximations for queueing networks with multiple servers and blocking. IEEE Transactions on Computers, 38(1), 99–114.

    Google Scholar 

  • Akyildiz, I. F., & Bolch, G. (1988). Mean value analysis approximation for multiple server queueing networks. Performance Evaluation, 8(2), 77–91.

    Google Scholar 

  • Akyildiz, I. F., & Huang, C.-C. (1993). Exact analysis of queueing networks with multiple job classes and blocking-after-service. Queueing Systems, 13(4), 427–440.

    Google Scholar 

  • Akyildiz, I. F., & Liebeherr, J. (1989). Application of norton’s theorem on queueing networks with finite capacities. In Infocom ’89. Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies (Vol. 3, pp. 914–923). Washington, D.C.: IEEE Computer Society Press.

    Google Scholar 

  • Akyildiz, I. F., & Sieber, A. (1988). Approximate analysis of load dependent general queueing networks. IEEE Transaction on Software Engineering, 14(11), 1537–1545.

    Google Scholar 

  • Akyildiz, I. F., & von Brand, H. (1994). Exact solutions for networks of queues with blocking-after-service. Theoretical Computer Science, 125(1), 111–130.

    Google Scholar 

  • Altiok, T. (1996). Performance analysis of manufacturing systems. New York: Springer.

    Google Scholar 

  • Altiok, T., & Ranjan, R. (1989). Analysis of production lines with genral service times and finite buffers: A two-node decomposition approach. Engineering Cost and Production Economics, 17(1–4), 155–165.

    Google Scholar 

  • Balsamo, S., & Clò, M. (1998). A convolution algorithm for product-form queueing networks with blocking. Annals of Operations Research, 79(0), 97–117.

    Google Scholar 

  • Balsamo, S., & Donatiello, L. (1989). On the cycle time distribution in a two-stage cyclic network with blocking. IEEE Transactions on Software Engineering, 15(10), 1206–1216.

    Google Scholar 

  • Balsamo, S., Personè, V. D. N., & Inverardi, P. (2003). A review on queueing network models with finite capacity queues for software architectures performance prediction. Performance Evaluation, 51(2–4), 269–288.

    Google Scholar 

  • Bard, Y. (1979). Some extensions to multiclass queueing network analysis. In Proceedings of 4th International Symposium on Modelling and Performance Evaluation of Computer Systems (pp. 51–62), Vienna.

    Google Scholar 

  • Bard, Y. (1981). A simple approach to system modeling. Performance Evaluation, 1(3), 225–248.

    Google Scholar 

  • Baskett, F., Chandy, K. M., Muntz, R. R., & Palacios, F. G. (1975). Open, closed, and mixed networks of queues with different classes of customers. Journal of the Association for Computing Machinery, 22(2), 248–260.

    Google Scholar 

  • Baynat, B., & Dallery, Y. (1993). Approximate techniques for general closed queueing networks with subnetworks having population constraints. European Journal of Operational Research, 69(2), 250–264.

    Google Scholar 

  • Baynat, B., & Dallery, Y. (1996). A product-form approximation method for general closed queueing networks with several classes of customers. Performance Evaluation, 24(3), 165–188.

    Google Scholar 

  • Baynat, B., Dallery, Y., & Ross, K. (1994). A decomposition approximation method for multiclass bcmp queueing networks with multiple-server stations. Annals of Operations Research, 48(3), 273–294.

    Google Scholar 

  • Bolch, G., & Fischer, M. (1993). Bottapprox: Eine Engpaßanalyse für geschlossene Warteschlangennetze auf der Basis der Summationsmethode. In Proceedings of 4th GI/ITG Conference on Measurement, Modeling and Performance Evaluation of Computer and Communication Systems (pp. 511–517).

    Google Scholar 

  • Bolch, G., Fleischmann, G., & Schreppel, R. (1987). Ein funktionales Konzept zur Analyse von Warteschlangennetzen und Optmierung von Leistungsgrößen. In Proceedings of 4th GI/ITG Conference on Measurement, Modeling and Performance Evaluation of Computer and Communication Systems (pp. 327–342).

    Google Scholar 

  • Bolch, G., Greiner, S., de Meer, H., & Trivedi, K. S. (2006). Queueing networks and Markov chains. Modeling and performance evaluation with computer science applications (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  • Bouhchouch, A., Frein, Y., & Dallery, Y. (1993). Analysis of closed-loop manufacturing systems with finite buffers. Applied Stochastic Models and Data Analysis, 9(2), 111–125.

    Google Scholar 

  • Bouhchouch, A., Frein, Y., & Dallery, Y. (1996). Performance evaluation of closed tandem queueing networks with finite buffers. Performance Evaluation, 26(2), 115–132.

    Google Scholar 

  • Boxma, O. J. (1983). The cyclic queue with one general and one exponential server. Advances in Applied Probability, 15(4), 857–873.

    Google Scholar 

  • Boxma, O. J., & Donk, P. (1982). On response time and cycle time distribution in a two-stage cyclic queue. Performance Evaluation, 2(3), 181–194.

    Google Scholar 

  • Boxma, O. J., Kelly, F. P., & Konheim, A. G. (1984). The product form for sojourn time distributions in cyclic exponential queues. Journal of the Assiciation for Computing Machinery, 31(1), 128–133.

    Google Scholar 

  • Buzacott, J. A., & Yao, D. D. (1986). Flexible manufacturinig systems: A review of analytical models. Management Science, 32(7), 890–905.

    Google Scholar 

  • Buzen, J. (1973). Computational algorithms for closed queueing systems with exponential servers. Communications of the Association for Computing Machinery, 16(9), 527–531.

    Google Scholar 

  • Carbini, S., Donatiello, L., & Iazeolla, G. (1986). An efficient algorithm for the cycle time distribution in two-stage cyclic queues with a non-exponential server. In Proceedings of the International Seminar in Teletraffic Analysis and Computer Performance Evaluation (pp. 99–115), Amsterdam.

    Google Scholar 

  • Cavaille, J.-B., & Dubois, D. (1982). Heuristic methods based on mean value analysis for flexible manufacturing system performance evaluation. In Proceedings of the 21st IEEE Conference on Decision and Control (pp. 1061–1066), Orlando.

    Google Scholar 

  • Chandy, K. M., Herzog, U., & Woo, L. (1975a). Approximate analysis of general queuing networks. IBM Journal of Research and Development, 19(1), 43–49.

    Google Scholar 

  • Chandy, K. M., Herzog, U., & Woo, L. (1975b). Parametric analysis of queuing networks. IBM Journal of Research and Development, 19(1), 36–42.

    Google Scholar 

  • Chandy, K. M., & Neuse, D. (1982). Linearizer: A heuristic algorithm for queueing network models of computing systems. Communications of The Association for Computing Machinery, 25(2), 126–134.

    Google Scholar 

  • Chandy, K. M., & Sauer, C. (1980). Computational algorithms for product form queueing networks. Communications of the Association for Computing Machinery, 23(10), 573–583.

    Google Scholar 

  • Chen, C., George, E., & Tardif, V. (2001). A bayesian model of cycle time prediction. IIE Transactions, 33(10), 921–930.

    Google Scholar 

  • Chen-Hong, C. (1999). Cycle time modeling. Ph.D. thesis, University of Texas, Austin.

    Google Scholar 

  • Chow, W.-M. (1980). The cycle time distribution of exponential cyclic queues. Journal of the Association for Computing Machinery, 27(2), 281–286.

    Google Scholar 

  • Clò, M. (1998). MVA for product-form cyclic queueing networks with blocking. Annals of Operations Research, 79(0), 83–96.

    Google Scholar 

  • Curry, G. L., & Feldman, R. M. (2008). Manufacturing systems modeling and analysis. Berlin: Springer.

    Google Scholar 

  • Daduna, H. (1984). Burkes’s theorem in passage times in gordon-newell networks. Advances in Applied Probability, 16(4), 867–886.

    Google Scholar 

  • Daduna, H. (1986). Two-stage cyclic queues with nonexponential servers: Steady-state and cyclic time. Operations Research, 34(3), 455–459.

    Google Scholar 

  • Dallery, Y., & Cao, X.-R. (1992). Operational analysis of stochastic closed queueing networks. Performance Evalution, 14(1), 43–61.

    Google Scholar 

  • Dallery, Y., & Frein, Y. (1989). A decomposition method for the approximate analysis of closed queueing networks with blocking. In Proceedings of the First International Workshop on Queueing Networks with Blocking (pp. 193–209). North Carolina.

    Google Scholar 

  • Dallery, Y., & Gershwin, S. B. (1992). Manufacturing flow line systems: A review of models and analytical results. Queueing Systems, 12(1–2), 3–94.

    Google Scholar 

  • Dayar, T., & Meri, A. (2008). Kronecker representation and decompositional analysis of closed queueing networks with phase-type service distributions and arbitrary buffer sizes. Annals of Operations Research, 164(1), 193–210.

    Google Scholar 

  • Disney, R. L., & König, D. (1985). Queueing networks: A survey of their random processes. SIAM Review, 27(3), 335–403.

    Google Scholar 

  • Duenyas, I., & Hopp, W. J. (1990). Estimating variance of output from cyclic exponential queueing systems. Queueing Systems: Theory and Application, 7(3–4), 337–353.

    Google Scholar 

  • Eager, D. L., Sorin, D. J., & Vernon, M. K. (2000). AMVA techniques for high service time variability. In SIGMETRICS ’00: Proceedings of the 2000 Association for Computing Machinery SIGMETRICS international conference on Measurement and modeling of computer systems (pp. 217–228), Santa Clara.

    Google Scholar 

  • Framinan, J. M., González, P. L., & Ruiz-Usano, R. (2003). The conwip production control system: Review and research issues. Production Planning and Control, 14(3), 255–265.

    Google Scholar 

  • Frein, Y., & Dallery, Y. (1989). Analysis of cyclic queueing networks with finite buffers and blocking before service. Performance Evaluation, 10(3), 197–210.

    Google Scholar 

  • Gaver, D., & Shedler, G. S. (1973a). Approximate models for processor utilization in multiprogrammed computer systems. SIAM Journal of Computing, 2(3), 183–192.

    Google Scholar 

  • Gaver, D., & Shedler, G. S. (1973b). Processor utilization in multiprogramming systems via diffution approximation. Operations Research, 21(2), 569–576.

    Google Scholar 

  • Gelenbe, E. (1975). On approximate computer system models. Journal of the Association for Computing Machinery, 22(2), 261–269.

    Google Scholar 

  • Gonzales, E. A. (1997). Optimal resource allocation in closed finite queuing networks with blocking after service. Ph.D. thesis, University of Massachusetts, Amherst.

    Google Scholar 

  • Gordon, W., & Newell, G. (1967). Closed queueing systems with exponential servers. Operations Research, 15(2), 254–265.

    Google Scholar 

  • Helber, S., Schimmelpfeng, K., & Stolletz, R. (2011). Setting inventory levels of conwip flow lines via linear programming. Business Research, 4(1), 98–115.

    Google Scholar 

  • Hopp, W. J., & Spearman, M. L. (1990). Conwip: A pull alternative to kanban. International Journal of Production Research, 28(5), 879–894.

    Google Scholar 

  • Hopp, W. J., & Spearman, M. L. (2000). Factory physics. New York: Irwin McGraw-Hill.

    Google Scholar 

  • Jackson, J. (1957). Networks of waiting lines. Operations Research, 5(4), 518–521.

    Google Scholar 

  • Jackson, J. (1963). Jobshop-like queueing systems. Management Science, 10(1), 131–142.

    Google Scholar 

  • Kleinrock, L. (1975). Queueing systems. Volume I: Theory. New York: Wiley.

    Google Scholar 

  • Kobayashi, H. (1974). Application of the diffusion approximation to queueing networks, part 1: Equilibrium queue distributions. Journal of the Association for Computing Machinery, 21(2), 316–328.

    Google Scholar 

  • Koenigsberg, E. (1982). Twenty five years of cyclic queues and closed queue networks: A review. The Journal of the Operational Research Society, 33(7), 605–619.

    Google Scholar 

  • Koenigsberg, E., & Lam, R. C. (1976). Cyclic queue models of fleet operations. Operations Research, 24(3), 516–529.

    Google Scholar 

  • Kouvatsos, D. D., & Almond, J. (1988). Maximum entropy two-station cyclic queues with multiple general servers. Acta Informatica, 26(3), 241–267.

    Google Scholar 

  • Lee, T.-E., & Seo, J.-W. (1998). Stochastic cyclic flow lines: Non-blocking, markovian models. The Journal of the Operational Research Society, 49(5), 537–548.

    Google Scholar 

  • Li, J., Blumenfeld, D. E., Huang, N., & Alden, J. M. (2009). Throughput analysis of production systems: Recent advances and future topics. International Journal of Production Research, 47(14), 3823–3851.

    Google Scholar 

  • Little, J. D. C. (1961). A proof of the ueuing formula: L = λ W. Operations Research, 9(3), 383–387.

    Google Scholar 

  • Liu, X.-G., Zhuang, L., & Buzacott, J. A. (1993). A decomposition method for throughput analysis of cyclic queues with production blocking. In R. O. Onvural & I. F. Akyildiz (Eds.), Queueing networks with finite capacity (pp. 253–266). Amsterdam: North-Holland.

    Google Scholar 

  • Marie, R. A. (1979). An approximate analytical method for general queueing networks. IEEE Transactions on Software Engineering, 5(5), 530–538.

    Google Scholar 

  • Marie, R. (1980). Calculating equilibrium probabilities for λ(n)/c k /1/n queues. In PERFORMANCE ’80: Proceedings of the 1980 International Symposium on Computer Performance Modelling, Measurement and Evaluation (pp. 117–125), Toronto.

    Google Scholar 

  • Marie, R. A., Snyder, P. M., & Stewart, W. J. (1982). Extensions and computational aspects of an iterative method. In Proceedings of the 1982 Association for Computing Machinery SIGMETRICS Conference on Measurement and Modeling of Computer Systems (pp. 186–194), Seattle.

    Google Scholar 

  • Marie, R. A., & Stewart, W. J. (1977). A hybrid iterative-numerical method for the solution of a general queueing network. In Proceedings of 3rd Symposium on Measuring, Modelling and Evaluating Computer Systems (pp. 173–188), Bonn-Bad Godesberg.

    Google Scholar 

  • Marie, R. A., & Stewart, W. J. (1983). On exact and approximate iterative methods for general queueing networks. Publication Interne IRISA, 6(24), 1–27.

    Google Scholar 

  • Marshall, A. W., & Olkin, I. (2007). Life distributions. New York: Springer.

    Google Scholar 

  • Matta, A., & Chefson, R. (2005). Formal properties of closed flow lines with limited buffer capacities and random processing times. In The 2005 European Simulation and Modelling Conference.

    Google Scholar 

  • Mitzlaff, U. (1997). Diffusionsapproximation von Warteschlangensystemen. Ph.D. thesis, Technische Universität Clausthal.

    Google Scholar 

  • Neuse, D., & Chandy, K. M. (1981). SCAT: A heuristic algorithm for queueing network models of computing systems. Association for Computing Machinery Sigmetrics Performance Evaluation Review, 10(3), 59–79.

    Google Scholar 

  • Neuse, D., & Chandy, K. M. (1982).HAM: The heuristic aggregation method for solving general closed queueing network models of computer systems. Association for Computing Machinery Sigmetrics Performance Evaluation Review, 11(4), 195–212.

    Google Scholar 

  • Onvural, R. (1990). Survey of closed queueing networks with blocking. Association for Computing Machinery Computing Surveys, 22(2), 83–121.

    Google Scholar 

  • Onvural, R. O., & Perros, H. (1989a). Approximate throughput analyis of cyclic queueing networks with finite buffers. IEEE Transactions on Software Engineering, 15(6), 800–808.

    Google Scholar 

  • Osorio, C., & Bierlaire, M. (2009). An analytic finite capacity queueing network model capturing the propagation of congestion and blocking. European Journal of Operational Research, 196(3), 996–1007.

    Google Scholar 

  • Perros, H. G., Nilsson, A., & Liu, Y. (1988). Approximate analysis of product-form type queueing networks with blocking and deadlock. Performance Evaluation, 8(1), 19–39.

    Google Scholar 

  • Rall, B. (1998). Analyse und Dimensionierung von Materialflußsystemen mittels geschlossener Warteschlangensysteme. Ph.D. thesis, Technische Hochschule Karlsruhe.

    Google Scholar 

  • Reiser, M. (1979). A queueing network analysis of computer communication networks with window flow control. IEEE Transactions on Communications, 27(8), 1199–1207.

    Google Scholar 

  • Reiser, M. (1981). Mean-value analysis and convolution method for queue-dependent servers in closed queueing networks. Performance Evaluation, 1(1), 7–18.

    Google Scholar 

  • Reiser, M., & Kobayashi, H. (1974). Accuracy of the diffusion approximation for some queueing systems. IBM Journal of Research and Development, 18(2), 110–124.

    Google Scholar 

  • Reiser, M., & Lavenberg, S. S. (1980). Mean-value analysis of closed multichain queueing networks. Journal of the Association for Computing Machinery, 27(2), 313–322.

    Google Scholar 

  • Satyam, K., & Krishnamurthy, A. (2008). Performance evaluation of a multi-product system under conwip control. IIE Transactions, 40(3), 252–264.

    Google Scholar 

  • Sauer, C., & Chandy, K. M. (1975). Approximate analysis of central server models. IBM Journal of Research and Development, 19(3), 303–313.

    Google Scholar 

  • Sauer, C., & Chandy, K. M. (1981). Computer systems performance modelling. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Schassberger, R., & Daduna, H. (1983). The time for a round trip in a cycle of exponential queues. Journal of the Association for Computing Machinery, 30(1), 146–150.

    Google Scholar 

  • Schmidt, R. (1997). An approximate mva algorithm for exponential, class-dependent multiple servers. Performance Evaluation, 29(4), 245–254.

    Google Scholar 

  • Schweitzer, P. (1979). Approximate analysis of multiclass closed network of queues. In Proceedings of International Conference on Stochastic Control and Optimization (pp. 25–29), Amsterdam.

    Google Scholar 

  • Schweitzer, P. J., Seidmann, A., & Shalev-Oren, S. (1986). The correction terms in approximate mean value analysis. Operations Research Letters, 4(5), 197–200.

    Google Scholar 

  • Schwerer, E., & van Mieghem, J. A. (1994). Brownian models of closed queueing networks: Explicit solutions for balanced three-station systems. The Annals of Applied Probability, 4(2), 448–477.

    Google Scholar 

  • Sevcik, K., & Mitrani, I. (1981). The distribution of queuing network states at input and output instants. Journal of the Association for Computing Machinery, 28(2), 358–371.

    Google Scholar 

  • Shanthikumar, J. G., & Gocmen, M. (1983). Heuristic analysis of closed queueing networks. International Journal of Production Research, 21(5), 675–690.

    Google Scholar 

  • Shum, A. W. (1980). Queueing models for computer systems with general service time distributions. New York: Garland Publishing.

    Google Scholar 

  • Shum, A., & Buzen, J. (1977). The EPF techniques: A method for obtaining approximate solutions to closed queueing networks with general service times. In H. Beiler & E. Gelenbe (Eds.), Measuring, modelling and evaluationg computer systems (pp. 201–220). Amsterdam: North Holland.

    Google Scholar 

  • Spearman, M. L. (1991). An analytic congestion model for closed production systems with ifr processing times. Management Science, 37(8), 1015–1029.

    Google Scholar 

  • Stewart, W. J. (2009). Probability, Markov chains, queues, and simulation. Princeton: Princeton University Press.

    Google Scholar 

  • Strelen, J. (1989). A generalization of mean value analysisto higher moments: Moment analysis. Association for Computing Machinery Sigmetrics Performance Evaluation Review, 14(1), 129–140.

    Google Scholar 

  • Sun, F. (2006). Stochastic analyses arising from an new approach for closed queueing networks. Ph.D. thesis, Texas A&M University.

    Google Scholar 

  • Suri, R., & Desiraju, R. (1997). Performance analysis of flexible maufacturing systems with a single discrete material-handling device. The International Journal of Flexible Manufacturing Systems, 9(3), 223–249.

    Google Scholar 

  • Suri, R., & Diehl, G. W. (1986). A variable buffer-size model and its use in analyzing closed queueing networks with blocking. Management Science, 32(2), 206–224.

    Google Scholar 

  • Suri, R., & Hildebrant, R. R. (1984). Modelling flexible manufacturing systems using mean-value analysis. Journal of Manufacturing Systems, 3(1), 27–38.

    Google Scholar 

  • Tempelmeier, H., & Kuhn, H. (1993). Flexible manufacturing systems. New York: Wiley.

    Google Scholar 

  • Tempelmeier, H., Kuhn, H., & Tetzlaff, U. (1989). Performance evaluation of flexible manufacturing systems with blocking. International Journal of Production Research, 27(11), 1963–1979.

    Google Scholar 

  • Tolio, T., & Gershwin, S. B. (1998). Throughput estimation in cyclic queueing networks with blocking. Annals of Operations Research, 79(0), 207–229.

    Google Scholar 

  • Whitt, W. (1984). Open and closed networks of queues. AT&T Bell Laboratories Technical Journal, 63(9), 1911–1979.

    Google Scholar 

  • Yao, D. D., & Buzacott, J. A. (1985). Modeling a class of state-dependent routing in flexible manufacturing systems. Annals of Operations Research, 3(3), 153–167.

    Google Scholar 

  • Yao, D. D., & Buzacott, J. A. (1986a). The exponentialization approach to flexible manufacturing system models with general processing times. European Journal of Operational Research, 24(3), 410–416.

    Google Scholar 

  • Yao, D. D., & Buzacott, J. A. (1986b). Models of flexible manufacturing systems with limited local buffers. International Journal of Production Research, 24(1), 107–117.

    Google Scholar 

  • Yüzükirmizi, M. (2005). Finite closed queueing networks with multiple servers and multiple chains. Ph.D. thesis, University of Massachusetts Amherst.

    Google Scholar 

  • Yüzükirmizi, M. (2006). Performance evaluation of closed queueing networks with limited capacities. Turkish Journal of Engineering and Enviromental Science, 30(5), 269–286.

    Google Scholar 

  • Zhuang, L., Buzacott, J. A., & Liu, X.-G. (1994). Approximate mean value performance analysis of cyclic queueing networks with production blocking. Queueing Systems, 16(1), 139–165.

    Google Scholar 

  • Zhuang, L., & Hindi, K. S. (1990). Mean value analysis for multiclass closed queueing network models of flexible manufacturing systems with limited buffers. European Journal of Operational Research, 46(3), 366–379.

    Google Scholar 

  • Zhuang, L., & Hindi, K. S. (1991). Approximate MVA for closed queueing network models of FMS with a block-and-wait mechanism. Computers and Industrial Engineering, 20(1), 35–44.

    Google Scholar 

  • Zhuang, L., & Hindi, K. S. (1993). Approximate decomposition for closed queueing network models of fmss with a block-and-wait and state-dependent routing mechanism. European Journal of Operational Research, 67(3), 373–386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lagershausen, S. (2013). Literature Review. In: Performance Analysis of Closed Queueing Networks. Lecture Notes in Economics and Mathematical Systems, vol 663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32214-3_3

Download citation

Publish with us

Policies and ethics