Skip to main content

Observational Tests of Atmosphere Evolution Hypotheses

  • Chapter
  • First Online:
Origin and Evolution of Planetary Atmospheres

Part of the book series: SpringerBriefs in Astronomy ((BRIEFSASTRON))

  • 1062 Accesses

Abstract

Spacecraft observations of hydrogen Energetic Neutral Atoms (ENAs) and the application of advanced numerical models developed a relevant remote-sensing technique in planetary and space science. Hydrogen ENAs are produced whenever a solar- or stellar- wind proton interacts via charge exchange with a neutral atom from an upper atmosphere so that their signals contain the information from the structure of the upper atmosphere and its neutral gas density, as well as that from the plasma environment around a planetary obstacle. By combining these observations with theoretical models of the solar wind plasma flow and its interaction with the upper atmospheres of planetary bodies and comets can be analyzed and studied to a great accuracy. From comparative studies between Solar System planets and exoplanets one can expect that similar processes will also occur within their environments. Exoplanets which are in orbit locations closer to their host stars, or within close-in habitable zones of active dwarf stars can be seen as proxies of Solar System planets during the time of the young Sun period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hovestadt, D., Scholer, M.: Radiation belt-produced energetic hydrogen in interplanetary space. J. Geophys. Res. 81, 5039–5042 (1976)

    Article  ADS  Google Scholar 

  2. Krimigis, S.M., Kohl, J.W., Armstrong, T.P.: The magnetospheric contribution to the quiet-time low energy nucleon spectrum in the vicinity of Earth. Geophys. Res. Lett. 2, 457–460 (1975)

    Article  ADS  Google Scholar 

  3. Fuselier, S.A., Funsten, H.O., Heirtzler, D., Janzen, P., Kucharek, H., McComas, D.J., Möbius, E., Moore, T.E., Petrinec, S.M., Reisenfeld, D.B., Schwadron, N.A., Trattner, K.J., Wurz, P.: Energetic neutral atoms from the Earth’s subsolar magnetopause. Geophys. Res. Lett. 37(13), (2010)

    Google Scholar 

  4. Collier, M.R., Moore, T.E., Ogilvie, K.W., Chornay, D., Keller, J.W., 14 co-authors: Observations of neutral atoms from the solar wind. J. Geophys. Res. 106, 24893–24906 (2001)

    Google Scholar 

  5. Futaana, Y., Barabash, S., Grigoriev, A., Holmström, M., Kallio, E., 42 co-authors: First ENA observations at Mars: ENA emissions from the martian upper atmosphere. Icarus 182, 424–430 (2006)

    Google Scholar 

  6. Gunell, H., Kallio, E., Jarvinen, R., Janhunen, P., Holmström, M., Dennerl, K.: Simulations of solar wind charge exchange X-ray emissions at Venus. Geophys. Res. Lett. 34, L03107 (2007)

    Article  Google Scholar 

  7. Mura, A., Orsini, S., Milillo, A., Kallio, E., Galli, A.: and 30 co-authors: ENA detection in the dayside of Mars: ASPERA-3 NPD statistical study. Planet. Space Sci. 56, 840–845 (2008)

    Article  ADS  Google Scholar 

  8. Galli, A., Wurz, P., Bochsler, P., Barabash, S., Grigoriev, A., Futaana, Y., Holmström, M., 44 co-authors: First observation of energetic neutral atoms in the Venus environment. Planet. Space Science 56, 807–811 (2008)

    Google Scholar 

  9. Lichtenegger, H.I.M., Lammer, H., Kulikov, Yu.N., Kazeminejad, S., Molina-Cuberos, G.H., Rodrigo, R., Kazeminejad, B., Kirchengast, G.: Effects of low energetic neutral atoms on martian and venusian dayside exospheric temperature estimations. Space Sci. Rev. 125, 469–501 (2006)

    ADS  Google Scholar 

  10. Barth, C.A., Fastie, W.G., Hord, C.W., Pearce, J.B., Kelly, K.K., Stewart, A.I., Thomas, G.E., Anderson, G.P., Raper, O.F.: Mariner 6: ultraviolet spectrum of Mars upper atmosphere. Science 165, 1004–1005 (1969)

    Article  ADS  Google Scholar 

  11. Barth, C.A.: Interpretation of the Mariner 5 Lyman alpha measurements. J. Atmos. Sci. 25, 564–567 (1968)

    Article  ADS  Google Scholar 

  12. Keating, G.M., Bougher, S.W., Zurek, R.W., Tolson, R.H., Cancro, G.J., 23 co-authors: The structure of the upper atmosphere of Mars: in situ accelerometer measurements from Mars Global Surveyor. Science 279, 1672–1676 (1998)

    Google Scholar 

  13. Lichtenegger, H.I.M., Lammer, H., Vogl, D., Bauer, S.J.: Possible temperature effects of energetic neutral hydrogen atoms on the martian exosphere. Adv. Space Res. 33, 140–144 (2004)

    Article  ADS  Google Scholar 

  14. Mitchell, D.G., Paranicas, C.P., Mauk, B.H., Roelof, E.C., Krimigis, S.M.: Energetic neutral atoms from Jupiter measured with the Cassini magnetospheric imaging instrument: time dependence and composition. J. Geophys. Res. 109(A9), A09S11 (2004)

    Google Scholar 

  15. Dandouras, J., Amsif, A.: Production and imaging of energetic neutral atoms from Titan’s exosphere: a 3-D model. Planet. Space Sci. 47, 1355–1369 (2004)

    Article  ADS  Google Scholar 

  16. Mitchell, D.G., Brandt, P.C., Roelof, E.C., Dandouras, J., Krimigis, S.M., Mauk, B.H.: Energetic neutral atom emissions from Titan interaction with Saturn’s magnetosphere. Science 308, 989–992 (2005)

    Article  ADS  Google Scholar 

  17. Gruntman, M., Roelof, E.C., Mitchell, D.G., Fahr, H.J., Funsten, H.O., McComas, D.J.: Energetic neutral atom imaging of the heliospheric boundary region. J. Geophys. Res. 106, 15767–15782 (2001)

    Article  ADS  Google Scholar 

  18. Wood, B.E., Müller, H.-R., Zank, G., Linsky, J.L.: Measured mass loss rates of solar-like stars as a function of age and activity. ApJ 574, 412–425 (2002)

    Article  ADS  Google Scholar 

  19. Wood, B.E., Müller, H.-R., Zank, G.P., Linsky, J.L., Redfield, S.: New mass loss measurements from astrospheric Ly-\(\alpha \) absorption. ApJ 628, L143–L146 (2005)

    Google Scholar 

  20. Holmström, M., Ekenbäck, A., Selsis, F., Penz, T., Lammer, H., Wurz, P.: Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD 209458b. Nature 451, 670–679 (2010)

    Google Scholar 

  21. Ekenbäck, A., Holmström, M., Wurz, P., Grießmeier, J.-M., Lammer, H., Selsis, F., Penz, T.: Energetic neutral atoms around HD 209458b: estimations of magnetospheric properties. ApJ 709, 670–679 (2010)

    Article  ADS  Google Scholar 

  22. Lammer, H., Kislyakova, K.G., Holmström, H., Khodachenko, M.L.: Griemeier, J.-M.: Hydrogen ENA-cloud observation and modeling as a tool to study star-exoplanet interaction. Astrophys. Space Sci. 335, 9–23 (2011)

    Google Scholar 

  23. Charbonneau, D., Brown, T.M., Latham, Mayor, D.W.: Detection of planetary transits across a Sun-like star. ApJ 529, L45–L48 (2000)

    Google Scholar 

  24. Guillot, T., Burrows, A., Hubbard, W.B., Lunine, J.I., Saumon, D.: Giant planets at small orbital distances. ApJ 459, L35–L38 (1996)

    Article  ADS  Google Scholar 

  25. Hubbard, W.B., Burrows, A., Lunine, J.I.: Theory of giant planets. Ann. Rev. Astron. Astrophys. 40, 103–136 (2002)

    Article  ADS  Google Scholar 

  26. Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J., Weiss, W.W.: Atmospheric loss of exoplanets resulting from stellar X-Ray and extreme-ultraviolet heating. ApJ 598, L121–L124 (2003)

    Article  ADS  Google Scholar 

  27. Vidal-Madjar, A.: Lecavelier des Etangs, A., Désert, J.M., Ballester, G.E., Ferlet, R., Hébrard, G., Mayor, M.: An extended upper atmosphere around the extrasolar planet HD209458 b. Nature 422, 143–146 (2003)

    Google Scholar 

  28. Ben-Jaffel, L.: Exoplanet HD 209458b: inated hydrogen atmosphere but no sign of evaporation. ApJ 671, L61–L64 (2007)

    Article  ADS  Google Scholar 

  29. Ben-Jaffel, L., Sona Hosseini, S.: On the existence of energetic atoms in the upper atmosphere of exoplanet HD 209458b. ApJ 709, 1284–1296 (2010)

    Google Scholar 

  30. Lecavelier des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., Ballester, G.E., Désert, J.-M., Ferlet, R., Hébrard, G., Sing, D.K., Tchakoumegni, K.-O., Udry, S., 2010. Evaporation of the planet HD 189733b observed in H I Lyman-\(\alpha \). A&A 514, A72 (2010)

    Google Scholar 

  31. Guo, J.H.: Escaping particle fluxes in the atmospheres of close-in exoplanets. I. Model of hydrogen. ApJ 733, 98, 10 (2011)

    Google Scholar 

  32. Penz, T., Erkaev, N.V., Kulikov, Yu.N., Langmayr, D., Lammer, H., Micela, G., Cecchi-Pestellini, C., Biernat, H.K., Selsis, F., Barge, P., Deleuil, M., Léger, A.: Mass loss from “Hot Jupiters”- Implications for CoRoT discoveries, Part II: Long time thermal atmospheric evaporation modeling. Planet. Space Sci. 56, 1260–1272 (2008)

    Article  ADS  Google Scholar 

  33. Yelle, R.V.: Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170, 167–179 (2004)

    Article  ADS  Google Scholar 

  34. Tian, F., Toon, O.B., Pavlov, A.A., De Sterck, H.: Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. ApJ 621, 1049–1060 (2005)

    Article  ADS  Google Scholar 

  35. García Muñoz, A.: Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 55, 1426–1455 (2007)

    Google Scholar 

  36. Koskinen, T.T., Yelle, R.V., Lavvas, P., Lewis, N.K.: Characterizing the thermosphere of HD209458 b with UV tranist observations. ApJ 723, 116–128 (2010)

    Article  ADS  Google Scholar 

  37. Erkaev, N.V., Kulikov, Yu.N., Lammer, H., Selsis, F., Langmayr, D., Jaritz, G.F., Biernat, H.K.: Roche lobe effects on the atmospheric loss of “Hot Jupiters”. A&A 472, 329–334 (2007)

    Google Scholar 

  38. Vidal-Madjar, A., Désert, J., Lecavelier des Etangs, A., Hébrard, G., Ballester, G.E., Ehrenreich, D., Ferlet, R., McConnell, J.C., Mayor, M., Parkinson, C.D.: Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b. ApJ 604, L69–L72 (2004)

    Google Scholar 

  39. Linsky, J.L., Yang, H., France, K., Froning, C.S., Green, J.C., Stocke, J.T., Osterman, S.N.: Observations of mass loss from the transiting exoplanet HD 209458b. ApJ 717, 1291–1299 (2010)

    Article  ADS  Google Scholar 

  40. Fossati, L., Haswell, C.A., Froning, C.S., Hebb, L., Holmes, S., Kolb, U., Helling, C., Carter, A., Wheatley, P., Cameron, A.C., Loeillet, B., Pollacco, D., Street, R., Stempels, H.C., Simpson, E., Udry, S., Joshi, Y.C., West, R.G., Skillen, I., Wilson, D.: Metals in the exosphere of the highly irradiated planet WASP-12b. ApJ 714, L222–L227 (2010)

    Article  ADS  Google Scholar 

  41. Lammer, H., Odert, P., Leitzinger, M., Khodachenko, M.L., Panchenko, M., Kulikov, Yu.N, Zhang, T.L., Lichtenegger, H.I.M., Erkaev, N.V., Wuchterl, G., Micela, G., Penz, A., Biernat, H.K., Weingrill, J., Steller, M., Ottacher, H., Hasiba, J., Hanslmeier, A.: Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? A&A 506, 399–410 (2009)

    Article  ADS  Google Scholar 

  42. Erkaev, N.V., Penz, T., Lammer, H., Lichtenegger, H.I.M., Wurz, P., Biernat, H.K., Griessmeier, J.-M., Weiss, W.W.: Plasma and magnetic field parameters in the vicinity of short periodic giant exoplanets. ApJS 157, 396–401 (2005)

    Article  ADS  Google Scholar 

  43. Murray-Clay, R.A., Chiang, E.I., Murray, N.: Atmospheric escape from hot Jupiters. ApJ 693, 23–42 (2009)

    Article  ADS  Google Scholar 

  44. Shematovich, V.I.: Suprathermal hydrogen produced by the dissociation of molecular hydrogen in the extended atmosphere of exoplanet HD 209458b. Sol. Syst. Res. 44, 96–103 (2010)

    Article  ADS  Google Scholar 

  45. Khodachenko, M.L., Lammer, H., Lichtenegger, H.I.M., Langmayr, D., Erkaev, N.V., Grießmeier, J.M., Leitner, M., Penz, T., Biernat, H.K., Motschmann, U., Rucker, H.O.: Mass loss of “Hot Jupiters”: implications for CoRoT discoveries. Part I: the importance of magnetospheric protection of a planet against ion loss caused by coronal mass ejections. Planet. Space Sci. 55, 631–642 (2007)

    Article  ADS  Google Scholar 

  46. Li, S-L.: Miller, N., Lin, D.N.C., Fortney, J.J.: WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation. Nature 463, 1054–1056 (2010)

    Google Scholar 

  47. Lammer, H., Kislyakova, K.G., Odert, P., Leitzinger, M., Khodachenko, M.L., Holmströem, M., Hanslmeier, A.: Exoplanet upper atmosphere envrionment characterization. In: Richards, M., Hubeny, I. (eds.) From Interacting Binaries to Exoplanets: Essential Modeling Tools, vol. 282, pp. 525–533. Cambridge University Press, Cambridge, Proceedings of the IAU (2012)

    Google Scholar 

  48. Lecavelier des Etangs, A., Vidal-Madjar, A., Désert, J.-M.: The origin of hydrogen around HD 209458b. Nature 456, E1 (2008)

    Google Scholar 

  49. Lammer, H., Eybl, V., Kislyakova, K.G., Weingrill, J., Holmström, M., Khodchenko, M.L., Kulikov, Yu.N, Reiners, A., Leitzinger, M., Odert, P., Xian Grüß, M., Dorner, B., Güdel, M., Hanslmeier, A.: UV transit observations of EUV-heated expanded thermospheres of Earth-like exoplanets around M-stars: testing atmosphere evolution scenarios. Astrophys. Space Sci. 335, 39–50 (2011)

    Article  ADS  Google Scholar 

  50. Shustov, B., Sachov, M., Gomez de Castro, A.I., Ana, I., Pagano, I.: WSO-UV ultraviolet mission for the next decade. Astrophys. Space Sci. 320, 187–190 (2009)

    Article  ADS  Google Scholar 

  51. Spreiter, J.R., Stahara, S.S.: A new predicative model for determining solar wind-terrestrial planet interactions. J. Geophys. Res. 85, 6769–6777 (1980)

    Article  ADS  Google Scholar 

  52. Tian, F., Kasting, J.F., Liu, H., Roble, R.G.: Hydrodynamic planetary thermosphere model: 1. The response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res. 113, (2008). doi:10.1029/2007JE002946

  53. Tian, F., Solomon, S.C., Qian, L., Lei, J., Roble, R.G.: Hydrodynamic planetary thermosphere model: 2. Coupling of an electron transport/energy deposition model. J. Reophys. Res. 113, E07005 (2008)

    Google Scholar 

  54. Tian, F.: Thermal escape from super Earth atmospheres in the habitable zones of M Stars. ApJ 703, 905–909 (2009)

    Article  ADS  Google Scholar 

  55. Lichtenegger, H.I.M., Lammer, H., Grießmeier, J.-M., Kulikov, Yu.N., von Paris, P., Hausleitner, W., Krauss, S., Rauer, H.: Aeronomical evidence for higher \(CO_2\) levels during Earth’s Hadean epoch. Icarus 210, 1–7 (2010)

    Google Scholar 

  56. Quirrenbach, A., Amado, P.J., Mandel, H., Caballero, J.A., Ribas, I., Reiners, A., Mundt, R.: and the CARMENES Consortium: CARMENES: Calar Alto high-resolution search for M dwarfs with exo-earths with a near-infrared echelle spectrograph. Astron. Soc. Pac. Conf. Ser. 77356, 37 (2010)

    Google Scholar 

  57. Mahadevan, S., Ramsey, L., Redman, S., Zonak, S., Wright, J., Wolszczan, A., Endl, M., Zhao, B.: The habitable zone planet finder project: a proposed high resolution NIR spectrograph for the Hobby Eberly Telescope (HET) to discover low mass exoplanets around M stars. Astron. Soc. Pac. Conf. Ser. 77356, 10 (2010)

    Google Scholar 

  58. Catala, C., The PLATO team: PLATO: PLAnetary Transits and Oscillations of stars. Exp. Astron. 23, 329–256 (2009)

    Google Scholar 

  59. Catala, C., The PLATO team: PLATO: PLAnetary transits and oscillations of stars. Community Asteros. 158, 330–336 (2009)

    Google Scholar 

  60. Lammer, H., Hanslmeier, A., Schneider, J., Stateva, I.K., 32 co-authors: Exoplanet status report: observation, characterization and evolution of habitable exoplanets and their host stars. Sol. Syst. Res. 44, 314–335 (2010)

    Google Scholar 

  61. Lammer, H., Kislyakova, K.G., Odert, P., Leitzinger, M., Schwarz, R., Pilat-Lohinger, E., Kulikov, Yu.N, Khodachenko, M.L., Güdel, M., Hanslmeier, A.: Pathways to Earth-like atmospheres: extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig. Life Evol. Biosph. 41, 503–522 (2012)

    Article  ADS  Google Scholar 

  62. Lammer, H., Güdel, M., Kulikov, Yu.N, Ribas, I., Zaqarashvili, T.V., Khodachenko, M.L., Kislyakova, K.G., Gröller, H., Odert, P., Leitzinger, M., Fichtinger, B., Krauss, S., Hausleitner, W., Holmström, M., Sanz-Forcada, J., Lichtenegger, H.I.M., Hanslmeier, A., Shematovich, V.I., Bisikalo, D., Rauer, H., Fridlund, M.: Variability of solar/stellar activity and magnetic field and its influence on planetary atmosphere evolution. Earth Planets Space 63, 179–199 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Lammer .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Lammer, H. (2013). Observational Tests of Atmosphere Evolution Hypotheses . In: Origin and Evolution of Planetary Atmospheres. SpringerBriefs in Astronomy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32087-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32087-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32086-6

  • Online ISBN: 978-3-642-32087-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics