Skip to main content

Protoatmospheres

  • Chapter
  • First Online:
Origin and Evolution of Planetary Atmospheres

Part of the book series: SpringerBriefs in Astronomy ((BRIEFSASTRON))

  • 1091 Accesses

Abstract

For studying the origin and evolution of planetary atmospheres it is important to understand which sources and sinks contributed to their initial formation. As illustrated in

Fig. 1.1 the origin of the earliest atmospheres of terrestrial planets can be related mainly on three formation scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stevenson, D.J.: Formation of the giant planets. Planet. Space Sci. 30, 755–764 (1982)

    Article  ADS  Google Scholar 

  2. Wuchterl, G.: The critical mass for protoplanets revised—massive envelopes through convection. Icarus 106, 323–334 (1993)

    Google Scholar 

  3. Mizuno, H.: Formation of the giant planets. Prog. Theor. Phys. 64, 544–557 (1980)

    Article  ADS  Google Scholar 

  4. Ikoma, M., Nakazawa, K., Emori, H.: Formation of giant planets: dependences on core accretion rate and grain opacity. ApJ 537, 1013–1025 (2000)

    Google Scholar 

  5. Halliday, A.N.: The origin of the earliest history of the Earth. Treatise Geochem. 1, 509–557 (2003)

    Google Scholar 

  6. Rafikov, R.R.: Atmospheres of protoplanetary cores: critical mass for nucleated instability. ApJ 648, 666–682 (2006)

    Article  ADS  Google Scholar 

  7. Ikoma, M., Hori, Y.: In-situ accretion of hydrogen-rich atmospheres on short-period super-Earths: implications for the Kepler-11 planets. ApJ, arXiv:1204.5302v1 (2012) (submitted)

    Google Scholar 

  8. Elkins-Tanton, L.T.: Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008)

    Google Scholar 

  9. Elkins-Tanton, L., Seager, S.: Ranges of atmospheric mass and composition of super-Earth exoplanets. ApJ 685, 1237–1246 (2008)

    Article  ADS  Google Scholar 

  10. Rubey, W.W.: Geological history of seawater. Bull. Geol. Soc. Am. 62, 1111–1148 (1951)

    Article  Google Scholar 

  11. Hayashi, C., Nakazawa, K., Mizuno, H.: Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43, 22–28 (1979)

    Article  ADS  Google Scholar 

  12. Matsui, T., Abe, Y.: Impact-induced atmospheres and oceans on Earth and Venus. Nature 322, 526–528 (1986)

    Google Scholar 

  13. Najita, J.R., Strom, S.E., Muzerolle, J.: Demographics of transition objects. Mon. Not. R. Astron. Soc. 378, 369–378 (2007)

    Article  ADS  Google Scholar 

  14. Lunine, J.I., O’Brien, D.P., Raymond, S.N., Morbidelli, A., Qinn, T., Graps, A.L.: Dynamical models of terrestrial planet formation. Adv. Sci. Lett. 4, 325–338 (2011)

    Article  Google Scholar 

  15. Alibert, Y., Broeg, C., Benz, W., Wuchterl, G., Grasset, O., Sotin, C., Eiroa, C., Henning, T., Herbst, T., Kaltenegger, L., Léger, A., Liseau, R., Lammer, H., Beichman, C., Danchi, W., Fridlund, M., Lunine, J., Paresce, F., Penny, A., Quirrenbach, A., Röttgering, H., Selsis, F., Schneider, J., Stam, D., Tinetti, G., White, G.J.: Origin and formation of planetary systems. Astrobiology 10, 19–32 (2007)

    Google Scholar 

  16. Lammer, H., Kislyakova, K.G., Odert, P., Leitzinger, M., Schwarz, R., Pilat-Lohinger, E., Kulikov, Yu.N., Khodachenko, M.L., Güdel, M., Hanslmeier, A.: Pathways to Earth-like atmospheres: extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig. Life Evol. Biosph. 41, 503–522 (2012)

    Google Scholar 

  17. Farley, K.A., Poreda, R.: Mantle neon and atmospheric contamination. Earth Planet Sci. Lett. 114, 325–339 (1992)

    Google Scholar 

  18. Podosek, F.A.: Noble gases. Tr. Geochem. 1, 381–405 (2003)

    ADS  Google Scholar 

  19. Güdel, M., Guinan, E.F., Skinner, S.L.: The X-ray sun in time: a study of the long-term evolution of coronae of solar-type stars. ApJ 483, 947–960 (1997)

    Google Scholar 

  20. Ribas, I., Guinan, E.F., Güdel, M., Audard, M.: Evolution of the solar activity over time and effects on planetary atmospheres: I. High-energy irradiances (1–1700Å). ApJ 622, 680–694 (2005)

    Google Scholar 

  21. Güdel, M.: The Sun in time: activity and environment. Living Rev. Sol. Phys. 4(3) (2007)

    Google Scholar 

  22. Ringwood, A.E.: Origin of the Earth and Moon, p. 307. Springer, New York (1979)

    Google Scholar 

  23. Wänke, H., Dreibus, G.: Chemical composition and accretion history of terrestrial planets. Philos. Trans. R. Soc. A 325, 545–557 (1988)

    Article  ADS  Google Scholar 

  24. Kokubo, E., Ida, S.: Formation of protoplanets from planetesimals in the solar nebula. Icarus 143, 15–27 (2000)

    Article  ADS  Google Scholar 

  25. Raymond, S.N., Quinn, T., Lunine, J.I.: Making other Earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004)

    Article  ADS  Google Scholar 

  26. Weidenschilling, S.J.: The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51, 153–158 (1977)

    Article  ADS  Google Scholar 

  27. Wetherill, G.W.: Accumulation of terrestrial planets and implications concerning lunar origin. In: Hartmann, W.K., Phillips, R.J., Taylor, G.J. (eds.) Origin of the Moon Lunar and Planet. pp. 519–550, University Arizona press, Chicago (1986)

    Google Scholar 

  28. Anders, E., Owen, T.: Mars and Earth—origin and abundance of volatiles. Science 198, 453–465 (1977)

    Google Scholar 

  29. Zahnle, K.J., Kasting, J.F., Pollack, J.B.: Evolution of a steam atmosphere during Earth’s accreation. Icarus 74, 62–97 (1988)

    Article  ADS  Google Scholar 

  30. Lunine, J.I., Chambers, J., Morbidelli, A., Leshin, L.A.: The origin of water on Mars. Icarus 165, 1–8 (2003)

    Article  ADS  Google Scholar 

  31. Morbidelli, A., Chambers, J., Lunine, J.I., Petit, J.M., Robert, F., Valsecchi, G.B., Cyr, K.: Source regions and timescales for the delivery of water to Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000)

    Article  ADS  Google Scholar 

  32. Albarède, F., Blichert-Toft, J.: The split fate of the early Earth, Mars, Venus and Moon. CR Geosci. 339, 917–927 (2007)

    Google Scholar 

  33. Jarosewich, E.: Chemical analysis of meteorites: a combination of stony and iron meteorite analyses. Meteoritics 25, 323–337 (1990)

    Google Scholar 

  34. Liu, L.-G.: The inception of the oceans and \(\text{ CO}_{2}\)-atmosphere in the early history of the Earth. Earth Planet Sci. Lett. 227, 179–184 (2004)

    Google Scholar 

  35. Elkins-Tanton, L.T.: Formation of water ocean on rocky planets. Astrophys. Space Sci. 332, 359–364 (2011)

    Article  ADS  Google Scholar 

  36. Solomatov, V.S.: Fluid dynamics of a terrestrial magma ocean. In: Origin of the Earth and the Moon. University Arizona Press, Tucson, pp 323–338 (2000)

    Google Scholar 

  37. Bauer, S.J.: Über die Entstehung der Planetenatmosphären. Arch. Met. Geoph. Biokl. Ser. A textbf27, 217–232 (1978)

    Google Scholar 

  38. Abe, Y.: Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100, 27–39 (1997)

    Google Scholar 

  39. Zahnle, K.J., Kasting, J.F.: Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 68, 462–480 (1986)

    Article  ADS  Google Scholar 

  40. Hunten, D.M., Pepin, R.O., Walker, J.C.G.: Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987)

    Article  ADS  Google Scholar 

  41. Valley, A.M., Peck, W.H., King, E.M., Wilde, S.A.: A cool early Earth. Geology 30, 351–354 (2002)

    Google Scholar 

  42. Lammer, H., Bredehöft, J.H., Coustenis, A., Khodachenko, M.L., Kaltenegger, L., Grasset, O., Prieur, D., Raulin, F., Ehrenfreund, P., Yamauchi, M., Wahlund, J.-E., Grießmeier, J.-M., Stangl, G., Cockell, C.S., Kulikov, Yu.N, Grenfell, L., Rauer, H.: What makes a planet habitable? Astron. Astrophys. Rev. 17, 181–249 (2009)

    Google Scholar 

  43. Léger, A., Selsis, F., Sotin, C., Guillot, T., Despois, D., Mawet, D., Ollivier, M., Labèque, A., Valette, C., Brachet, F., Chazelas, B., Lammer, H.: A new family of planets? “Ocean-planets”. Icarus 169, 499–504 (2004)

    Article  ADS  Google Scholar 

  44. Selsis, F., Chazelas, B., Bordé, P., Ollivier, M., Brachet, F., Decaudin, M., Bouchy, F., Ehrenreich, D., Grießmeier, J.-M., Lammer, H., Sotin, C., Grasset, O., Moutou, C., Barge, P., Deleuil, M., Mawet, D., Despois, D., Kasting, J.F., Léger, A.: Could we identify hot ocean-planets with CoRoT, Kepler and Doppler velocimetry? Icarus 191, 453–468 (2007)

    Google Scholar 

  45. Brown, H.: Rare gases and the formation of the Earth’s atmosphere, In: Kuiper, G.P (ed.) The Atmospheres of the Earth and Planets, pp 258–266. University of Chicago Press, Chicago (1949)

    Google Scholar 

  46. Porcelli, D., Wasserburg, G.J.: Mass transfer of Helium, Neon, Argon, and Xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta. 59, 4921–4937 (1995)

    Google Scholar 

  47. Allègre, C.J., Hofmann, A.W., O‘Nions, R. K.: The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996)

    Google Scholar 

  48. Javoy, M.: The birth of the Earth’s atmosphere: the behaviour and fate of its major elements. Chem. Geol. 147, 11–25 (1998)

    Article  Google Scholar 

  49. Owen, T-, Bar-Nun, A.: Volatile contributions form icy planetesimals, In: Camp, R.M., Righter, K (eds.) Origin of the Earth and Moon, pp 459–471. University of Arizona Press, Tucson (2000)

    Google Scholar 

  50. Dauphas, N.: The dual origin of the terrestrial atmosphere. Icarus 165, 326–339 (2003)

    Article  ADS  Google Scholar 

  51. Marty, B.: Neon and Xenon isotopes in MORB: implications for Earth-atmosphere evolution. Earth Planet. Sci. Lett. 94, 45–56 (1989)

    Article  ADS  Google Scholar 

  52. Caffee, M.W., Hudson, G.B., Velsko, C., Huss, G.R., Alexander Jr, E.C., Chivas, A.R.: Primordial noble gases from Earth’s mantle: identification of a primitive volatile component. Sci. 285, 2115–2118 (1999)

    Google Scholar 

  53. Tian, F., Kasting, J.F., Solomon, S.C.: Thermal escape of carbon from the early martian atmosphere. Geophys. Res. Lett. 36(2), CiteID L02205 (2009)

    Google Scholar 

  54. Lammer, H., Chassefière, E., Karatekin, Ö, Morschhauser, A., Niles, P.B., Mousis, O., Grott, M., Gröller, H., Hauber, E., Pham, L.B.S.: Outgassing history and escape of the martian atmosphere and water inventory. Space Sci. Rev. submitted (2012)

    Google Scholar 

  55. Kasting, J.F.: \(\text{ CO}_{2}\) condensation and the climate of early Mars. Icarus 94, 1–13 (1991)

    Article  ADS  Google Scholar 

  56. Kasting, J.F.: The early Mars climate question heats up. Science 278, 1245 (1997)

    Google Scholar 

  57. Forget, F., Pierrehumbert, R.T.: Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273–1276 (1997)

    Google Scholar 

  58. Lammer, H., Stumptner, W., Bauer, S.J.: Loss of H and O from Mars: implications for the planetary water inventory. Geophys. Res. Lett. 23, 3353–3356 (1996)

    Article  ADS  Google Scholar 

  59. Lammer, H., Kasting, J.F., Chassefière, E., Johnson, R.E.: Kulikov, Yu.N., Tian, F.: Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399–436 (2008)

    Article  ADS  Google Scholar 

  60. Hirschmann, M.M., Withers, A.C.: Ventilation of \(\text{ CO}_{2}\) from a reduced mantle and consequences for the early Martian greenhouse. Earth Planet. Sci. Lett. 270, 147–155 (2008)

    Article  ADS  Google Scholar 

  61. Zahnle, K.J., Walker, J.C.G.: The evolution of solar ultraviolet luminosity. Rev. Geophys. 20, 280–292 (1982)

    Article  ADS  Google Scholar 

  62. Lammer, H.: Kulikov, Yu.N, Lichtenegger, H.I.M.: Thermospheric X-ray and EUV heating by the young Sun on early Venus and Mars. Space Sci. Rev. 122, 189–196 (2006)

    Article  ADS  Google Scholar 

  63. Kulikov, Yu.N: Lammer, H., Lichtenegger, H.I.M., Penz, T., Breuer, D., Spohn, T., Lundin, R., Biernat, H.K.: A comparative study of the influence of the active young Sun on the early atmospheres of Earth, Venus and Mars. Space Sci. Rev. 129, 207–243 (2007)

    Google Scholar 

  64. Grott, M., Morschhauser, A., Breuer, D., Hauber, E.: Volcanic outgassing of \(\text{ CO}_{2}\) and \(\text{ H}_{2}\)O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011)

    Article  ADS  Google Scholar 

  65. Chassefière, E., Leblanc, F.: Constraining methane release due to serpentinzation by the observed D/H ratio on Mars. Earth Planet. Sci. Lett. 310, 262–271 (2011)

    Article  ADS  Google Scholar 

  66. Bauer, S.J.: Origin of planetary atmospheres and their role in the evolution of life. In: Lacoste, H. (ed.) Proceedings of the Second European Workshop on Exo-Astrobiology , ESA SP-518, pp. 21–24 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Lammer .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Lammer, H. (2013). Protoatmospheres. In: Origin and Evolution of Planetary Atmospheres. SpringerBriefs in Astronomy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32087-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32087-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32086-6

  • Online ISBN: 978-3-642-32087-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics