Skip to main content

Accelerator-Based BNCT

  • Chapter
  • First Online:
Neutron Capture Therapy

Abstract

There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of boron neutron capture therapy (BNCT). In this chapter, a variety of possible charged-particle-induced nuclear reactions and the characteristics of the resulting neutron spectra will be discussed along with corresponding particle accelerators as neutron-producing sources. Different past and present efforts to develop such facilities worldwide will be described including an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator for accelerator-based (AB)-BNCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleynik V et al (2011) BINP accelerator based epithermal neutron source. Appl Radiat Isot 69:1635–1638

    Article  PubMed  CAS  Google Scholar 

  2. Allen DA, Beynon TD (1995) A design study for an accelerator-based epithermal neutron beam for BNCT. Phys Med Biol 40:807–821

    Article  PubMed  CAS  Google Scholar 

  3. Anderson OA, Alpen EL, Kwan JW et al (1994) ESQ-focused 2.5 MeV DC accelerator for BNCT. In: Proceedings of the 4th European particle accelerator conference. London, 1994, pp 2619–2621

    Google Scholar 

  4. Bayanov BF, Belov VP, Bender ED et al (1998) Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hospital. Nucl Instrum Methods Phys Res A 413:397–426

    Article  CAS  Google Scholar 

  5. Bayanov B, Burdakov A, Chudaev et al (2008) First neutron generation in the BINP accelerator based neutron source. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 514–517

    Google Scholar 

  6. Bleuel DL, Donahue RJ, Ludewigt BA et al (1998) Designing accelerator-based epithermal neutron beams for BNCT. Med Phys 25:1725–1734, and refs. therein

    Article  PubMed  CAS  Google Scholar 

  7. Blue T, Yanch J (2003) Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors. J Neurooncol 62(1):19–31, and refs. therein

    Article  PubMed  Google Scholar 

  8. Burlon AA, Kreiner AJ (2008) A comparison between a TESQ accelerator and a reactor as a neutron source for BNCT. Nucl Instrum Methods Phys Res B 266:763–771 and Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 458–461

    Google Scholar 

  9. Burlon AA, Kreiner AJ, White SM et al (2001) In-phantom dosimetry using the 13  C(d,n)14  N reaction for BNCT. Med Phys 28:796–803

    Article  PubMed  CAS  Google Scholar 

  10. Burlon AA, Kreiner AJ, Valda AA et al (2002) Optimization of a neutron production target and beam shaping assembly based on the 7Li(p,n)7Be reaction. In: Research and development in neutron capture therapy. Monduzzi Editore, Bologna, pp 229–234

    Google Scholar 

  11. Burlon AA, Kreiner AJ et al (2004) An optimized neutron-beam shaping assembly for accelerator-based BNCT. Appl Radiat Isot 61:811

    Article  PubMed  CAS  Google Scholar 

  12. Burlon AA, Kreiner AJ, Valda AA et al (2005) Optimization of a neutron production target and a beam shaping assembly based on the 7Li(p, n) reaction for BNCT. Nucl Instrum Methods Phys Res B 229:144–156

    Article  CAS  Google Scholar 

  13. Burlon AA, del V Roldan T, Kreiner AJ et al (2008) Nuclear reactions induced by deuterons and their applicability to skin tumor treatment through BNCT. Nucl Instrum Methods Phys Res B 266:4903–4910

    Article  CAS  Google Scholar 

  14. Capoulat ME, Minsky DM, Kreiner AJ (2011) Applicability of the 9Be(d,n)10B reaction to AB-BNCT skin and deep tumor treatment. Appl Radiat Isot 69:1684–1687

    Article  PubMed  CAS  Google Scholar 

  15. Ceballos C et al (2011) Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL. Appl Radiat Isot 69:1660–1663

    Article  PubMed  CAS  Google Scholar 

  16. Cleland MR (2006) Industrial applications of electron accelerators. CAS Proc. Yellow reports CERN 2006-012:383–416

    Google Scholar 

  17. Colonna N, Beaulieu L, Phair L et al (1999) Measurements of low-energy (d, n) reactions for BNCT. Med Phys 26(5):793–798

    Article  PubMed  CAS  Google Scholar 

  18. Custodero S, Leung K, Mattioda F (2008) Feasibility study for the upgrade of a compact neutron generator for NCT application. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 450–453

    Google Scholar 

  19. Esposito J, Colautti P, Fabritsiev S et al (2008) Be target development for the accelerator-based SPES-BNCT facility at INFN Legnaro. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 466–469

    Google Scholar 

  20. Forton E, Stichelbaut F, Cambriani A et al (2008) Overview of the IBA accelerator-based BNCT system. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 530–534

    Google Scholar 

  21. Friedman A, Grote DP, Haber I (1992) Particle simulation of heavy ion fusion beams. Phys Fluids B 4:2203

    Article  CAS  Google Scholar 

  22. Ganda F, Vujic J, Greenspan E et al (2008) Accelerator-driven sub-critical multiplier for BNCT. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 526–529

    Google Scholar 

  23. Ghani Z, Green S, Wojnecki et al (2008) BNCT beam monitoring, characterization and dosimetry. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 647–649 and refs. therein

    Google Scholar 

  24. Green S (1998) Developments in accelerator based BNCT. Radiat Phys Chem 51(4–6):561–569

    Article  CAS  Google Scholar 

  25. Guzek J, Tapper U, McMurray W et al (1997) Characterization of the 9Be(d, n)10B reaction as a source of neutrons employing commercially available radiofrequency quadrupole (RFQ) linacs. In: Proceedings of SPIE, The International Society for Optical Engineering, 2867, pp 509–512

    Google Scholar 

  26. Halfon S, Paul M, Steinberg D et al (2008) High power accelerator-based BNC with a liquid Li target and new applications to treatment of infectious diseases. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 470–473 and references therein

    Google Scholar 

  27. Halfon S et al (2011) High power liquid-lithium target prototype for accelerator-based boron neutron capture therapy. Appl Radiat Isot 69:1654–1656

    Article  PubMed  CAS  Google Scholar 

  28. Klinkowstein R, Shefer R, Yanch JC, et al (1997) Operation of a high current tandem electrostatic accelerator for boron neutron capture therapy. Advances in neutron capture therapy, Medicine and Physics, Elsevier Science B. V., Amsterdam, vol. 1, pp 522

    Google Scholar 

  29. Kobayashi T, Sakurai Y, Ono K (1998) Neutron irradiation systems for BNCT using accelerators and research reactors. Proc ECOMAP-98: 370–375

    Google Scholar 

  30. Kobayashi T, Bengua G, Tanaka K (2008) Neutrons for BNCT from the near threshold 7Li(p,n)7Be on a thick Li target. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 478–481 and refs. therein

    Google Scholar 

  31. Kononov VN, Androsenko PA, Bohovko MV et al (1994) 7Li(p, n)7Be reaction near the threshold: the prospective neutron source for BNCT. In: Proceedings of the 1st international workshop on accelerator-based neutron sources for BNCT. vol 2, pp 477–483

    Google Scholar 

  32. Kononov et al (1996) Accelerator-based and intense directed neutron source for BNCT. In: Conference proceedings, 7th international symposium on neutron capture therapy. vol 1, pp 528–532

    Google Scholar 

  33. Kononov VN, Bohovko MV, Kononov OE, et al (2006) Neutron therapy facility based on high current proton accelerator KG-2,5. Proceedings of RuPAC, Novosibirsk, Russia, pp 118–119

    Google Scholar 

  34. Kreiner AJ, et al (eds) (2011a) Proceedings of the 14th international congress on neutron capture therapy. Appl Radiat Isot vol 69(12)

    Google Scholar 

  35. Kreiner AJ, Kwan JW, Burlon AA et al (2007) A tandem-electrostatic-quadrupole for accelerator-based BNCT. Nucl Instrum Methods B 261:751–754

    Article  CAS  Google Scholar 

  36. Kreiner AJ, Thatar Vento V, Levinas P et al (2008) Development of a Tandem-electrostatic-quadrupole accelerator facility for BNCT. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 482–485

    Google Scholar 

  37. Kreiner AJ et al (2011) Development of a tandem-electrostatic-quadrupole facility for accelerator-based boron neutron capture therapy. Appl Radiat Isot 69:1672–1675

    Article  PubMed  CAS  Google Scholar 

  38. Kwan JW, Ackerman GD, Chan CF et al (1995) Acceleration of 100 mA of H- in a single channel electrostatic quadrupole accelerator. Rev Sci Instrum 66(7):3864

    Article  CAS  Google Scholar 

  39. Lee CL, Zhou XL (1999) Thick target neutron yields for the 7Li(p, n)7Be reaction near threshold. Nucl Instrum Methods Phys Res B 152:1–11

    Article  CAS  Google Scholar 

  40. Lee CL and Zhou XL (1999b) An algorithm for computing thick target differential p-Li neutron yields near threshold. In: Duggan JL et al (eds) Proceedings of the 15th international conference on the applications of accelerators in research and industry, pp 227–230

    Google Scholar 

  41. Levinas P, Kreiner AJ, Henestroza E (2008) Transport of high-intensity proton and deuteron beams through a TESQ accelerator. In: Proceedings of the 13th international congress on neutron capture therapy. ENEA, pp 411–414 and refs. therein

    Google Scholar 

  42. Liskien H, Paulsen A (1975) Neutron production cross section and energies for the reactions 7Li(p, n)7Be and 7Li(p, n)7Be*. At Data Nucl Data Tables 15:57–84

    Article  CAS  Google Scholar 

  43. Ludewigt BA, Chu WT, Donahue RJ et al (1997) An epithermal neutron source for BNCT based on an ESQ-accelerator. LBNL report 40642

    Google Scholar 

  44. Minsky DM, Kreiner AJ, Valda AA (2011) AB-BNCT BSA based on the 7Li(p,n)7Be reaction optimization. Appl Radiat Isot 69:1668–1671

    Article  PubMed  CAS  Google Scholar 

  45. Pisent A, Colautti P, Esposito J et al (2006) Progress on the accelerator based SPES-BNCT project at INFN Legnaro. J Phys Conf Ser 41:391–399. doi:10.1088/1742-6596/41/1/043, and references therein

    Article  CAS  Google Scholar 

  46. Porter EH (1980) The statistics of dose/cure relationships for irradiated tumours. Part I. Br J Radiol 53:210

    Article  PubMed  CAS  Google Scholar 

  47. Tanaka H et al (2011) Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS). Appl Radiat Isot 69:1642–1645

    Article  PubMed  CAS  Google Scholar 

  48. Taskaev S, Bayanov B, Belov V et al (2006) Development of Li target for AB-BNCT. Advances in NCT. Neutrino, Osaka, pp 292–295

    Google Scholar 

  49. Vento VT et al (2011) Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy. Appl Radiat Isot 69:1649–1653

    Article  PubMed  Google Scholar 

  50. Wheeler F, Nigg D, Capala J et al (1999) BNCT: implications of neutron beam and boron compound characteristics. Med Phys 26(7):1237–1244

    Article  PubMed  CAS  Google Scholar 

  51. Yanch JC, Zhou X-I, Shefer RE et al (1992) Accelerator-based epithermal neutron beam design for NCT. Med Phys 19:709–721, and references therein

    Article  PubMed  CAS  Google Scholar 

  52. Ziegler JF (2008) The stopping and range of ions in matter. www.srim.org/SRIM/SRIM2008.htm. Accessed 2009

  53. Zonta A et al (eds) (2008) BNCT: a new option against cancer. Proceedings of the 13th international congress on neutron capture therapy, Appl Radiat Isot. Florence, Italy, 67(7–8):s1–s380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres J. Kreiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kreiner, A.J. (2012). Accelerator-Based BNCT. In: Sauerwein, W., Wittig, A., Moss, R., Nakagawa, Y. (eds) Neutron Capture Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31334-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31334-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31333-2

  • Online ISBN: 978-3-642-31334-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics