Skip to main content

Allelopathy for the Management of Phytopathogens

  • Chapter
  • First Online:
Allelopathy

Abstract

Plant pathogens including fungi, bacteria, viruses and nematodes are responsible for huge yield losses in many economically important crops. Use of synthetic agrochemicals as soil fumigation, foliar spray or seed dressing is the most popular strategy for the management of plant diseases in the recent days. However, due to adverse effects of these chemicals on health and environment, consumers are currently demanding produce, which is free of these chemicals. Natural compounds derived from plants are more environmentally safe than synthetic chemicals. Many recent studies have shown that allelochemicals can effectively be used for the management of plant pathogens. Members of plant families like Acanthaceae, Amranthaceae, Chenopodiacea, Brassicaceae and Magnoliaceae are famous for their antifungal properties while those of Asteraceae, Poaceae and Papillionaceae are known for their nematicidal properties. These plants secondary metabolites can be exploited for the management of plant pathogens following crop rotation, green manuring and cultivation of allelopathic plants as cover crops or using crude plant extracts. In addition, the structures of novel allelochemicals can be used as analogue for the synthesis of new natural product-based pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Elyousr KAM, Asran MR (2009) Antibacterial activity of certain plant extracts against bacterial wilt of tomato. Arch Phytopathol Plant Prot 42:573–578

    Article  CAS  Google Scholar 

  • Adams PB (1971) Effect of soil temperature and soil amendments on Thielaviopsis root rot of sesame. Phytopathology 61:93–97

    Article  Google Scholar 

  • Agrios GN (2005) Plant pathology. 5th edition. Academic press, New York. pp. 293–351

    Google Scholar 

  • Ahameethunisa AR, Hopper W (2010) Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria. BMC Complement Altern Med 10:6. doi:10.1186/1472-6882-10-6

    Article  PubMed  Google Scholar 

  • Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour Technol 74:35–47

    Article  CAS  Google Scholar 

  • Akhtar MA, Rahber-Bhatti MH, Aslam M (1997) Antibacterial activity of plant diffusate against Xanthomonas campestris pv. citri. Int J Pest Manage 43:149–153

    Article  Google Scholar 

  • Anaya AL, Calera MR, Mata R, Miranda RP (1990) Allelopathic potential of compounds isolated from Ipomoea tricolor Cav. (Convolvulaceae). J Chem Ecol 16:2145–2152

    Article  CAS  Google Scholar 

  • Alexander SA, Waldenmaier CM (2002) Suppression of Pratylenchus penetrans populations in potato and tomato using African marigolds. J Nematol 34:130–134

    PubMed  Google Scholar 

  • Bajwa R, Javaid A, Shafique S, Javaid A, Jabeen K, Shafique S (2008) Fungistatic activity of aqueous and organic solvent extracts of rice varieties on phytophathogenic fungi. Allelopathy J 22:363–370

    Google Scholar 

  • Bar-Eyal M, Sharon E, Spiegel Y (2006) Nematicidal activity of Chrysanthemum coronarium. Eur J Plant Pathol 114:427–433

    Article  Google Scholar 

  • Bayraktar H, Dolar SF, Maden S (2007) Mating type groups of Ascochyta rabiei (Teleomorph: Didymella rabiei), the causal agent of chickpea blight in Central Anatolia. Tur J Agric 3:41–46

    Google Scholar 

  • Sk Bhardwaj, Laura JS (2009) Antibacterial activity of some plant-extracts against plant pathogenic bacteria Xanthomonas campestris PV. campestris. Indian J Agric Res 43:26–31

    Google Scholar 

  • Blažević I, Radonić A, Mastelić J, Zekić M, Skočibušić M, Maravić A (2010) Glucosinolates, glycosidically bound volatiles and antimicrobial activity of Aurinia sinuata (Brassicaceae). Food Chem 121:1020–1028

    Article  CAS  Google Scholar 

  • Cartwright D, Langcake P, Pryce RJ, Leworthy DP, Ride JP (1977) Chemical activation of host defense mechanisms as a basis for crop protection. Nature 267:511–513

    Article  CAS  Google Scholar 

  • Chitwood DJ (2001) Phytochemical based strategies for nematode control. Ann Rev Phytopathol 40:221–249

    Article  CAS  Google Scholar 

  • Chitwood DJ (2002) Phytochemical based strategies for nematode control. Ann Rev Phytopathol 40:221–249

    Article  CAS  Google Scholar 

  • Choudhary MI, Dur-E-Shahwar, Parveen Z, Jabbar A, Ali I, Atta-ur-Rahman (1995) Antifunga steroidal lactones from Withania coagulance. Phytochem 40:1243–1246

    Google Scholar 

  • Cuthbertson AGS, Murchie AK (2005) Economic spray thresholds in need of revision in Northern Irish Bramley orchards. Biol News 32:19

    Google Scholar 

  • Debprasad R, Prasad D, Singh RP, Ray D (2000) Chemical examination and antinemic activity of marigold (Tagetes erecta L.) flower. Ann Plant Prot Sci 8:212–217

    Google Scholar 

  • Deepak   (2011) Soil amendments, plant extracts and plant products for integrated disease management in agricultural crops: A review. Afr J Agric Res 6:6790–6797

    Article  Google Scholar 

  • De Albuquerque MB, Santos RCD, Lima LM, Nogueira RJMC, Ramos AR (2011) Allelopathy, an alternative tool to improve cropping systems. A review Agron Sustain Dev 31:379–395

    Article  Google Scholar 

  • Douda O, Zouhar M, Nováková E, Mazáková J (2012) Alternative methods of carrot (Daucus carota) protection against the northern root knot nematode (Meloidogyne hapla). Acta Agriculturae Scandinavica, Section B—Soil Plant Sci 62:91–93

    Article  Google Scholar 

  • Duke SO, Dayan FR, Romaine JG, Rimando AM (2000) Natural products as sources of herbicides: status and future trends. Weed Res 40:99–111

    Article  CAS  Google Scholar 

  • Dungan RS, Ibekwe AM, Yates SR (2003) Effect of propagyl bromide and 1,3-dichloropropene on microbial communities in an organically amended soil. FEMS Microbiol Ecol 43:75–87

    Article  PubMed  CAS  Google Scholar 

  • El-Beltagi HS, Kesba HH, Abdel-Alim AI (2011) Effect of root-knot nematode and two species of crown gall on antioxidant activity of grape leaves. Afr J Biotechnol 10:12202–12210

    CAS  Google Scholar 

  • El-Hamawi MH, Youssef MMA, Zawam S (2004) Management of Meloidogyne incognita, the root-knot nematode, on soybean as affected by marigold and sea ambrolia (damsisa) plants. J Pest Sci 77:95–98

    Article  Google Scholar 

  • Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KHM (2011) The role of allelopathy in agricultural pest management. Pest Manage Sci 67:493–506

    Article  CAS  Google Scholar 

  • Ferraz S, de Freitas LG (2004) Use of antagonistic plants and natural products. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology–advances and prospectives, volume ii: nematode management and utilization. CABI Publishing, Cambridge, pp. 931–977

    Chapter  Google Scholar 

  • Fukuta M, Xuan TD, Deba F, Tawata S, Khanh TD, Chung IM (2007) Comparative efficacies in vitro of antibacterial, fungicidal, antioxidant, and herbicidal activities of momilatones A and B. J Plant Interact 2:245–251

    Article  CAS  Google Scholar 

  • Gladieux P, Byrnes EJ, Aguileta G, Fisher MC, Heitman J, Giraud T (2011) 4-Epidemiology and evolution of fungal pathogens in plants and animals. In: Tibayrenc, M. (ed.), Genetics and evolution of infectious disease. Elsevier pp. 59–132

    Google Scholar 

  • Godoy G, Rodríguez-Kábana R, Morgan-Jones G (1983) Fungal parasites of Meloidogyne arenaria eggs in an Alabama soil. Nematropica 13:201–213

    Google Scholar 

  • Halbrendt JM (1996) Allelopathy in the management of plant-parasitic nematodes. J Nematol 28:8–14

    PubMed  CAS  Google Scholar 

  • Hanada RE, Pomella AWV, Soberanis W, Loguercio LL, Pereira JO (2009) Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biol Control 50:143–149

    Article  Google Scholar 

  • Hasegawa M, Mitsuhara I, Seo S, Imai T, Koga J, Okada K (2010) Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol Plant–Microbe Interact 23:1000–1011

    Google Scholar 

  • Holz RA, Troth K, Atkinson HJ (1999) The influence of potato cultivar on the lipid content and fecundity of Bolivian and U.K. populations of Globodera rostochiensis. J Nematol 31:357–366

    PubMed  CAS  Google Scholar 

  • Hooks CRR, Wang KH, Ploeg A, McSorley R (2010) Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Appl Soil Ecol 46:307–320

    Article  Google Scholar 

  • Hussain MA, Mukhtar T, Kayani MZ (2011) Efficacy evaluation of Azadirachta indica, Calotropis procera, Datura stramonium and Tagetes erecta against root-knot nematodes Meloidogyne incognita. Pak J Bot 43 (special issue 1):197–204

    Google Scholar 

  • IAS (International Allelopathy Society) (1996) Constitution and Bylaws. http://www-ias.uca.es/bylaws.htm. Browsed on 28 Feb 2012

  • Iqbal D, Javaid A (2012) Bioassays guided fractionation of Coronopus didymus for its antifungal activity against Sclerotium rolfsii. Nat Prod Res 26 (in press) DOI: 10.1080/14786419.2011.587421

  • Jabeen K, Javaid A (2008) Antifungal activity of aqueous and organic solvent extracts of allelopathic trees against Ascochyta rabiei. Allelopathy J 22:231–238

    Google Scholar 

  • Jabeen K, Javaid A, Athar M (2008) Fungistatic activity of aqueous and organic solvent extracts of Melia azedarach against Ascochyta rabiei. Pak J Phytopathol 20(1):143–149

    Google Scholar 

  • Jabeen K, Javaid A (2010) Antifungal activity of Syzygium cumini against Ascochyta rabiei, the cause of chickpea blight. Nat Prod Res 24(12):1158–1167

    Article  PubMed  CAS  Google Scholar 

  • Jabeen K, Javaid A, Ahmad E, Athar M (2011) Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei—the cause of chickpea blight. Nat Prod Res 25:264–276

    Article  PubMed  CAS  Google Scholar 

  • Javaid A, Amin M (2009) Antifungal activity of methanol and n-hexane extracts of three Chenopodium species against Macrophomina phaseolina. Nat Prod Res 23:1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Javaid A, Rehman HA (2011) Antifungal activity of leaf extracts of some medicinal trees against Macrophomina phaseolina. J Med Plants Res 5:2868–2872

    CAS  Google Scholar 

  • Javaid A, Saddique A (2011) Management of Macrophomina root rot of mungbean using dry leaves manure of Datura metel as soil amendment. Spanish J Agric Res 9:901–905

    Google Scholar 

  • Kanwal Q, Hussain I, Siddiqui HL, Javaid A (2010) Antifungal activty of flavonoids isolated from mango (Mangifera indica L.) leaves. Nat Prod Res 24:1907–1914

    Article  PubMed  CAS  Google Scholar 

  • Kanwal Q, Hussain I, Siddiqui HL, Javaid A (2011) Antimicrobial activity screening of isolated flavonoids from Azadirachta indica leaves. J Serb Chem Soc 76:375–384

    Article  CAS  Google Scholar 

  • Kato H, Kodama O, Akatsuka T, Oryzalexin E (1993) A diterpene phytoalexin from UV-irradiated rice leaves. Phytochem 33:79–81

    Article  CAS  Google Scholar 

  • Kato-Noguchi K (2011) Convergent or parallel molecular evolution of momilactone A and B: Potent allelochemicals, momilactones have been found only in rice and the moss Hypnum plumaeforme. J Plant Physiol 168:1511–1516

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BW, Alcorn SM (1980) Estimates of U.S. crop losses to prokaryote plant pathogens. Plant Dis 64:674–676

    Article  Google Scholar 

  • Kim J, Seo SM, Lee SG, Shin SC, Park IK (2008) Nematicidal activity of plant essential oils and components from coriander (Coriandrum sativum), Oriental Sweetgum (Liquidambar orientalis), and Valerian (Valeriana wallichii) Essential Oils against Pine wood Nematode (Bursaphelenchus xylophilus). J Agric Food Chem 56:7316–7320

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Kang YJ, Kim DH (2011a) RNA-Seq analysis of a soybean near-isogenicline carrying bacterial leaf pustule-resistant and -susceptible alleles. DNA Res 18:483–497

    Google Scholar 

  • Kim J, Seo SM, Park IK (2011b) Nematicidal activity of plant essential oils and components from Gaultheria fragrantissima and Zanthoxylum alatum against the pine wood nematode, Bursaphelenchus xylophilus. Nematology 13:87–93

    Article  CAS  Google Scholar 

  • Klein E, Katan J, Gamliel A (2011) Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant Dis 95:1116–1123

    Article  Google Scholar 

  • Kohli RK, Batish D, Singh HP (1998) Allelopathy and its implications in agroecosystems. J Crop Prod 1:169–202

    Article  Google Scholar 

  • Koike ST, Subbarao KV, Davis RM, Turini TA (2003) Vegetable diseases caused by soil borne pathogens. ANR University of California, Publication 8099

    Google Scholar 

  • Lewis JA, Papavizas GC (1971) Damping-off of sugarbeets caused by Aphanomyces cochlioides as affected by soil amendments and chemicals in green house. Plant Dis Rep 55:440–444

    CAS  Google Scholar 

  • Lu WC, Caoc XF, Hua M, Lia F, Yua GA, Liu SH (2011) A highly enantioselective access to chiral 1-(b-Arylalkyl)-1H-1,2,4-triazole derivatives as potential agricultural bactericides. Chem Biodivers 8:1497–1511

    Article  CAS  Google Scholar 

  • Ma J, Hill CB, Hartman GL (2010) Production of Macrophomina phaseolina conidia by multiple soybean isolates in culture. Plant Dis 94:1088–1092

    Article  Google Scholar 

  • Manning WJ, Crossan DF (1969) Field and greenhouse studies on the effect of plant amendments on Rhizoctonia hypocotyle rot of snapbean. Plant Dis Rep 53:227–231

    Google Scholar 

  • Matarese F, Sarrocco S, Gruber S, Seidl-Seiboth V, Vannacci G (2012) Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology 158:98–106

    Article  PubMed  CAS  Google Scholar 

  • Mayton HS, Olivier C, Vaughn SF, Loria R (1996) Correlation of fungicidal activity of Brassica species with allyl isothiocyanates production in macerated leaf tissues. Phytopathol 86:267–271

    Article  CAS  Google Scholar 

  • McLean KL, Hunt JS, Stewart A, Wite D, Porter IJ, Villalta O (2012) Compatibility of a Trichoderma atroviride biocontrol agent with management practices of Allium crops. Crop Prot 33:94–100

    Article  Google Scholar 

  • Michell VV, Wang JF, Midmore DJ, Hartman GL (1997) Effects of intercropping and soil amendment with urea and calcium oxide on the incidence of bacterial wilt of tomato and survival of soil-borne Pseudomonas solanacearum in Taiwan. Plant Pathol 46:600–610

    Article  Google Scholar 

  • Mojtahedi H, Santo GS, Hang AN, Wilson JH (1991) Suppression of root-knot nematode populations with selected rapeseed cultivars as green manure. J Nematol 23:170–174

    PubMed  CAS  Google Scholar 

  • Mojtahedi H, Santo GS, Wilson JH, Hang AN (1993) Managing Meloidogyne chitwoodi on potato with rapeseed as green manure. Plant Dis 77:42–46

    Article  Google Scholar 

  • Momol PJMT, Olson SM, Pradhanang PM (2005) Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis 89:497–500

    Article  CAS  Google Scholar 

  • Muehlchen AM, Rand RE, Parke JL (1990) Evaluation of crucifer green manure for controlling Aphanomyces root rot in pea. Plant Dis 74:651–654

    Article  Google Scholar 

  • Muto M (2001) Effect of water-soluble extracts of radish seed meal on control of lettuce brown spot Master thesis. National Chung Hsing University, Taiwan, p 86

    Google Scholar 

  • Natarajan N, Cork A, Boomathi N, Pandi R, Velavan S, Dhakshnamoorthy G (2006) Cold aqueous extracts of African marigold, Tagetes erecta for control tomato root knot nematode, Meloidogyne incognita. Crop Prot 25:1210–1213

    Article  Google Scholar 

  • Neerman MF (2003) Sesquiterpenes lactones a diverse class of compounds found in essential oils possessing antibacterial and antifungal properties. Int J Aromath 13:114–120

    Article  Google Scholar 

  • Nico AI, Jiménez-Díaz RM, Castillo P (2003) Solarization of soil in piles for the control of Meloidogyne incognita in olive nurseries in southern Spain. Plant Pathol 52:770–778

    Article  Google Scholar 

  • Niimura A (2002) Studies on the ecology and control of Welsh onion root rot cused by Fusarium redolens. Jpn J Phytopathol 68:140

    Article  Google Scholar 

  • Nishi K, Namiki F, Hirayae K, Fujita Y (2000) Effectiveness of deep plowing for soil sterilization with hot water injection. Plant Prot 46:50–53

    Google Scholar 

  • Núñez-Zofío M, Larregla S, Garbisu C (2011) Application of organic amendments followed by soil plastic mulching reduces the incidence of Phytophthora capsici in pepper crops under temperate climate. Crop Prot 32:1563–1572

    Article  CAS  Google Scholar 

  • Oka Y, Koltai H, Bar-Eyal M, Mor M, Sharon E, Chet I, Spiegel Y (2000) New strategies for the control of plant-parasitic nematodes. Pest Manage Sci 56:983–988

    Article  CAS  Google Scholar 

  • Oka Y, Tkachi N, Shuker S, Yerumiyahu U (2007) Enhanced nematicidal activity of organic and inorganic ammonia-releasing amendments by Azadirachta Indica extracts. Nematol 39:9–16

    CAS  Google Scholar 

  • Paulo ARCJ, Gouveia PR (2009) Nozzle and spray volume effects on chemical control of maize diseases. Rev Cienc Agron 40:533–538

    Google Scholar 

  • Perez MP, Navas-Cortes JA, Pascual-Villalobos MJ, Castillo P (2003) Nematicidal activity of essential oils and organic amendments from Asteraceae against root-knot nematodes. Plant Pathol 52:395–401

    Article  Google Scholar 

  • Polizzi GD, Guarnaccia AV, Parlavecchio G, Vitale A (2010) First report of southern blight on silverbush (Convolvulus cneorum) caused by Sclerotium rolfsii in Italy. Plant Dis 94:131–131

    Google Scholar 

  • Potter MJ, Davies K, Rathjen AJ (1998) Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. J Chem Ecol 24:67–80

    Article  CAS  Google Scholar 

  • Prats E, Galindo JC, Bazzalo ME, León A, Macías FA, Rubiales D, Jorrín JV (2007) Antifungal Activity of a new phenolic compound from capitulum of a head rot-resistant sunflower genotype. J Chem Ecol 33:2245–2253

    Article  PubMed  CAS  Google Scholar 

  • Punja ZK (1985) The biology, ecology, and control of Sclerotium rolfsii. Ann Rev Phytopathol 23:97–127

    Article  CAS  Google Scholar 

  • Rajesh K, Sharma GL (2002) Studies on antimycotic properties of Datura metel. J Ethnopharmacol 80:193–197

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Villapudua J, Munnecke DE (1988) Effect of solar heating and soil amendment of cruciferous residues on Fusarium oxysporum f. sp. conglutinans and other organisms. Phytopathology 78:289–295

    Article  Google Scholar 

  • Remesal E, Lucena C, Azpilicueta A, Navas-Cortés JA (2010) First report of southern blight of pepper caused by Sclerotium rolfsii in Southern Spain. Plant Dis 94:280–280

    Google Scholar 

  • Rial-Otero R, Arias-Estévez M, López-Periago E, Cancho-Grande B, Simal-Gándar J (2005) Variation in concentrations of the fungicides tebuconazole and dichlofluanid following successive applications to greenhouse-grown lettuces. J Agric Food Chem 53:4471–4475

    Article  PubMed  CAS  Google Scholar 

  • Riaz T, Khan SN, Javaid A (2007) Effects of incorporation of allelopathic plants leaf residues on mycorrhizal colonization and Gladiolus diseases. Allelopathy J 20:61–70

    Google Scholar 

  • Riaz T, Khan SN, Javaid A (2010a) Management of corm-rot disease of gladiolus by plant extracts. Nat Prod Res 24:1131–1138

    Article  PubMed  CAS  Google Scholar 

  • Riaz T, Khan SN, Javaid A (2010b) Management of Fusarium corm rot of gladiolus (Gladiolus grandiflorus sect. Blandus cv. Aarti) by using leaves of allelopathic plants. Afr J Biotechnol 8(30):4681–4686

    Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press Inc., Orlando, FL, p 422

    Google Scholar 

  • Riga E, Welacky T, Potter J, Anderson T, Topp E, Tenuta A (2001) The impact of plant residues on the soybean cyst nematode, Heterodera glycines. Can J Plant Pathol 23:168–173

    Article  Google Scholar 

  • Riggs RD, Niblack TL (1993) Nematode pests of oilseed crops and grain legumes. In Plant parasitic nematodes in temperate agriculture. In: K. Evans, D.L Trudgill, and J.M. Webster. CAB International, University Press, Cambridge pp. 209–258

    Google Scholar 

  • Ristaino JB (2010) The 2009 potato and tomato late blight epidemics: Genealogical history, multiple sources and migration events. Phytopathol 100:S161

    Google Scholar 

  • Rodriguez-Kabana R (1986) Organic and inorganic nitrogen amendment to soil as nematode suppressants. J Nematol 18:129–135

    PubMed  CAS  Google Scholar 

  • Saleh MA, Abdel-Rahman FH, Ibrahim NA, Taha NM (1987) Isolation and structure determination of new nematicidal triglyceride from Argemone mexicana. J Chem Ecol 13:1361–1370

    Article  CAS  Google Scholar 

  • Sano Z (1992) Suppression effect of the nematode density of antagonistic plant and resistant crop. In: Nakasono K (ed) Progress in nematology. The Japanese Nematological Society, Ibaraki, pp 253–257

    Google Scholar 

  • Sano Z (2005) Cultural control of the nematode damage. In: Noubunkyo (ed) Large encyclopedia of environmental conservation agriculture. Noubunkyo, Tokyo, pp 281–316

    Google Scholar 

  • Sano Z, Nakasono T, Araki M (1983) Penetration and development of Meloidogyne incognita in some enemy and host plants. Kyushu Plant Protect Res 29:132–136

    Article  Google Scholar 

  • Saremi H, Amiri ME, Ashrafi J (2011) Epidemiological aspects of bean decline disease caused by Fusarium species and evaluation of the bean resistant cultivars to disease in Northwest Iran. Afr J Biotechnol 10:14954–14961

    Article  Google Scholar 

  • Senanayake DMJB, Anupam V, Bikash M (2012) Virus-vector relationships, host range, detection and sequence comparison of chilli leaf curl virus associated with an epidemic of leaf curl disease of chilli in Jodhpur, India. J Phytopathol 160:46–155

    Article  CAS  Google Scholar 

  • Shukla RS, Abdul-Khaliq AlamM (2010) Chemical control of blossom blight disease of sarpagandha caused by Colletotrichum capsici. Afr J Biotechnol 9:6397–6400

    CAS  Google Scholar 

  • Singha IM, Kakoty Y, Unni BG, Kalita MC, Das J, Naglot A, Wann SB, Singh L (2011) Control of Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici using leaf extract of Piper betle L.: a preliminary study. World J Microbiol Biotechnol 27:2583–2589

    Article  Google Scholar 

  • Sipes BS, Arakaki AS (1997) Root-knot nematode management in dryland taro with tropical cover crops. J Nematol 29:721–724

    PubMed  CAS  Google Scholar 

  • Smolinska U, Morra MJ, Knudsen GR, Brown PD (1970) Toxicity of glucosinolate degradation products from Brassica napus seed meal towards Aphanomyces euteiches f. sp. pisi. Phytopathology 87:77–82

    Article  Google Scholar 

  • Subbarao KV, Hubbard JC, Koike ST (1994) Effect of broccoli residue on Verticillium dahliae and microsclerotia and wilt incidence in cauliflower. Phytopathology 84:1092

    Article  Google Scholar 

  • Sukul NC (1992) Plant antagonistic to plant-parasitic nematodes. Indian Rev Life Sci 12:23–52

    Google Scholar 

  • Sun B, Liu N, Zhao Y, Yan H, Wang Q (2011) Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chem 124:941–947

    Article  CAS  Google Scholar 

  • Taba S, Moromizato Z (2003) Biological and cultural controls of nematode disease in Okinawa prefecture—About the Southern root-knot nematode. In: Tsuchiya K, Tsushima S (eds) Proceedings of the biocontrol workshop VIII. The Phytopathological Society of Japan, Tokyo, pp. 49–61

    Google Scholar 

  • Taba S, Sawada J, Moromizato Z (2008) Nematicidal activity of Okinawa Island plants on the root-knot nematode Meloidogyne incognita (Kofoid and White) Chitwood. Pant Soil 303:207–216

    Article  CAS  Google Scholar 

  • Tiagi SA, Wani AH (1992) Effect of soil amendments of some members of family Compositae to Tylenchorhynchus brassicae on cauliflower and cabbage. Curr Nematol 3:119–122

    Google Scholar 

  • Tanda AS, Atwal AS, Bajaj YPS (1989) In vitro inhibition of root-knot nematode Meloidogyne incognita by sesame root exudate and its amino acids. Nematologica 35:115–124

    Article  CAS  Google Scholar 

  • Thiele K, Smalla K, Kropf S (2012) Detection of Acidovorax valerianellae, the causing agent of bacterial leaf spots in corn salad [Valerianella locusta (L.) Laterr.], in corn salad seeds. Lett Appl Microbiol 54:112–118

    Article  PubMed  CAS  Google Scholar 

  • Troncoso R, Espinoza C, Sánchez-Estrada A, Tiznado ME, Gracia HS (2005) Analysis of the isothiocyanates present in cabbage leaves extract and their potential application to control Alternaria rot in bell peppers. Food Res Int 38:701–708

    Article  CAS  Google Scholar 

  • Uddin MR, Li X, Won OJ, Park SU, Pyon JY (2011) Herbicidal activity of phenolic compounds from hairy root cultures of Fagopyrum tataricum. Weed Res 52:25–33

    Article  CAS  Google Scholar 

  • Uhlenbroek JH, Bijloo JD (1959) Investigations on nematicides. 11. Structure of a second nematicidal principle isolated from Tagetes roots. Recl Trav Chim Pays-Bas 78:382–390

    Article  CAS  Google Scholar 

  • Vaughn SF, Spencer GF, Loria R (1993) Inhibition of Helminthosporium solani strains by natural isothiocyanates. Amer Potato J 70:852–853

    Article  Google Scholar 

  • Vidaver AK, Lambrecht PA (2004) Bacteria as plant pathogens. The Plant Health Instructor. DOI: 10. 1094/PHI-I-2004-0809-01

    Google Scholar 

  • Vidhyasekaran P (2002) Bacterial disease resistance in plants Molecular biology and biotechnological applications. The Haworth Press, Binghamton 452

    Google Scholar 

  • Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates: a review. LWT—Food Sci Technol 42:1561–1572

    CAS  Google Scholar 

  • Wang HX, Ng TB (2001) Purification of allivin, a novel antifungal protein from bulbs of theround-cloved garlic. Life Sci 70:357–365

    Article  PubMed  CAS  Google Scholar 

  • Wang KH, McSorley R, Kokalis-Burelle N (2006) Effects of cover cropping, solarization, and soil fumigation on nematode communities. Plant Soil 286:229–243

    Article  CAS  Google Scholar 

  • Wang HD, Chen JP, Wang AG (2009) Studies on the epidemiology and yield losses from rice black-streaked dwarf disease in a recent epidemic in Zhejiang province, China. Plant Pathol 58:815–825

    Article  Google Scholar 

  • Wyllie TD (1993) Charcoal rot. In: Sinclair JB, Backman PA (eds) Compendium of soybean diseases, 3rd edn. APS Press, St. Paul, pp 30–33

    Google Scholar 

  • Xuan TD, Shinkichi T, Khanh TD, Min CI (2005) Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview. Crop Prot 24:197–206

    Article  Google Scholar 

  • Yanar Y, Gökçe A, Kadioglu I, Çam H, Whalon M (2011) In vitro antifungal evaluation of various plant extracts against early blight disease (Alternaria solani) of potato. Afr J Biotechnol 10:8291–8295

    CAS  Google Scholar 

  • Yu JQ (1999) Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato–Chinese chive (Allium tuberosum) intercropping system. J Chem Ecol 25:2409–2417

    Article  CAS  Google Scholar 

  • Zasada IA, Meyer SLF, Halbrendt JM, Rice C (2005) Activity of hydroxamic acids from Secale cereale against the Plant-Parasitic Nematodes Meloidogyne incognita and Xiphinema americanum. Phytopathology 95:1116–1121

    Article  PubMed  CAS  Google Scholar 

  • Zeng SM, Luo Y (2011) Systems analysis of wheat stripe rust epidemics in China. Eur J Plant Pathol 121:425–438

    Article  Google Scholar 

  • Zhang SS, Jin YL, Tang JJ, Chen X (2009) The invasive plant Solidago canadensis L. suppresses local soil pathogens through allelopathy. Appl Soil Ecol 41:215–222

    Article  Google Scholar 

  • Zhang SS, Zhu WJ, Wang B, Tang JJ, Chen X (2011) Secondary metabolites from the invasive Solidago canadensis L. accumulation in soil and contribution to inhibition of soil pathogen Pythium ultimum. Appl Soil Ecol 48:280–286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Javaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Javaid, A., Shoaib, A. (2013). Allelopathy for the Management of Phytopathogens. In: Cheema, Z., Farooq, M., Wahid, A. (eds) Allelopathy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30595-5_12

Download citation

Publish with us

Policies and ethics