Skip to main content

Experiment Setups and Parameter Estimation in Fluorescence Recovery After Photobleaching Experiments: A Review of Current Practice

  • Chapter
  • First Online:
Model Based Parameter Estimation

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 4))

Abstract

Fluorescence Recovery After Photobleaching (FRAP) is a popular and versatile family of methods used to estimate mobility and reaction parameters in cellular systems. Part of an area containing a fluorescently labeled species is bleached using a laser, and the effect of the perturbation of the spatial concentration profile of the fluorescent species is monitored. Subsequently, the collected data is reconciled with a model of the dynamics, thus yielding estimates for the parameters of interest. While originally devised to elucidate transport parameters, it was soon extended to the estimation of reaction rates, and is also used nowadays to answer a variety of questions on the organization of cellular systems.In this chapter, we review a variety of different approaches, classifying them according to the sources of uncertainty that are addressed or ignored, and the type of parameter that they attempt to estimate. We would like to highlight the importance of the general methodology as a tool that can be widely applied to a large number of situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J, 16(9):1055–69, 1976.

    Article  Google Scholar 

  2. J. Beaudouin, F. Mora-Bermudez, T. Klee, N. Daigle, and J. Ellenberg. Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys J, 90(6):1878–94, 2006.

    Article  Google Scholar 

  3. D. A. Berk, F. Yuan, M. Leunig, and R. K. Jain. Fluorescence photobleaching with spatial fourier analysis: measurement of diffusion in light-scattering media. Biophys J, 65(6):2428–36, 1993.

    Article  Google Scholar 

  4. K. Braeckmans, L. Peeters, N. N. Sanders, S. C. De Smedt, and J. Demeester. Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys J, 85(4):2240–52, 2003.

    Article  Google Scholar 

  5. J. Braga, J. M. Desterro, and M. Carmo-Fonseca. Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol Biol Cell, 15(10):4749–60, 2004.

    Article  Google Scholar 

  6. J. Braga, J. G. McNally, and M. Carmo-Fonseca. A reaction-diffusion model to study rna motion by quantitative fluorescence recovery after photobleaching. Biophys J, 92(8):2694–703, 2007.

    Article  Google Scholar 

  7. S. R. Chary and R. K. Jain. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc Natl Acad Sci U S A, 86(14):5385–9, 1989.

    Article  Google Scholar 

  8. M. B. Elowitz, M. G. Surette, P. E. Wolf, J. B. Stock, and S. Leibler. Protein mobility in the cytoplasm of escherichia coli. J Bacteriol, 181(1):197–203, 1999.

    Google Scholar 

  9. M. F. Garcia-Parajo, G. M. Segers-Nolten, J. A. Veerman, J. Greve, and N. F. van Hulst. Real-time light-driven dynamics of the fluorescence emission in single green fluorescent protein molecules. Proc Natl Acad Sci U S A, 97(13):7237–42, 2000.

    Article  Google Scholar 

  10. B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien. The fluorescent toolbox for assessing protein location and function. Science, 312(5771):217–24, 2006.

    Article  Google Scholar 

  11. N. Klonis, M. Rug, I. Harper, M. Wickham, A. Cowman, and L. Tilley. Fluorescence photobleaching analysis for the study of cellular dynamics. Eur Biophys J, 31(1):36–51, 2002.

    Article  Google Scholar 

  12. U. Kubitscheck, P. Wedekind, and R. Peters. Lateral diffusion measurement at high spatial resolution by scanning microphotolysis in a confocal microscope. Biophys J, 67(3):948–56, 1994.

    Article  Google Scholar 

  13. M. Kumar, M. S. Mommer, and V. Sourjik. Mobility of cytoplasmic, membrane, and dna-binding proteins in escherichia coli. Biophys J, 98(4):552–9, 2010.

    Article  Google Scholar 

  14. J. Lippincott-Schwartz, E. Snapp, and A. Kenworthy. Studying protein dynamics in living cells. Nat Rev Mol Cell Biol, 2(6):444–56, 2001.

    Article  Google Scholar 

  15. M. S. Mommer and D. Lebiedz. Modelling subdiffusion using reaction diffusion systems. SIAM J. on Appl. Math., 70(1):112–132, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Peters, A. Brunger, and K. Schulten. Continuous fluorescence microphotolysis: A sensitive method for study of diffusion processes in single cells. Proc Natl Acad Sci U S A, 78(2):962–966, 1981.

    Article  Google Scholar 

  17. R. D. Phair and T. Misteli. High mobility of proteins in the mammalian cell nucleus. Nature, 404(6778):604–9, 2000.

    Article  Google Scholar 

  18. G. Rabut, V. Doye, and J. Ellenberg. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol, 6(11):1114–21, 2004.

    Article  Google Scholar 

  19. I. F. Sbalzarini, A. Mezzacasa, A. Helenius, and P. Koumoutsakos. Effects of organelle shape on fluorescence recovery after photobleaching. Biophys J, 89(3):1482–92, 2005.

    Article  Google Scholar 

  20. N. C. Shaner, G. H. Patterson, and M. W. Davidson. Advances in fluorescent protein technology. J Cell Sci, 120(Pt 24):4247–60, 2007.

    Article  Google Scholar 

  21. D. Sinnecker, P. Voigt, N. Hellwig, and M. Schaefer. Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry, 44(18):7085–94, 2005.

    Article  Google Scholar 

  22. B. A. Smith and H. M. McConnell. Determination of molecular motion in membranes using periodic pattern photobleaching. Proc Natl Acad Sci U S A, 75(6):2759–63, 1978.

    Article  Google Scholar 

  23. D. M. Soumpasis. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J, 41(1):95–7, 1983.

    Article  Google Scholar 

  24. B. L. Sprague and J. G. McNally. Frap analysis of binding: proper and fitting. Trends Cell Biol, 15(2):84–91, 2005.

    Article  Google Scholar 

  25. B. L. Sprague, R. L. Pego, D. A. Stavreva, and J. G. McNally. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J, 86(6):3473–95, 2004.

    Article  Google Scholar 

  26. T. T. Tsay and K. A. Jacobson. Spatial fourier analysis of video photobleaching measurements. principles and optimization. Biophys J, 60(2):360–8, 1991.

    Google Scholar 

  27. A. Tsuji and S. Ohnishi. Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: dependence on spectrin association state. Biochemistry, 25(20):6133–9, 1986.

    Article  Google Scholar 

  28. M. Wachsmuth, T. Weidemann, G. Muller, U. W. Hoffmann-Rohrer, T. A. Knoch, W. Waldeck, and J. Langowski. Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys J, 84(5):3353–63, 2003.

    Article  Google Scholar 

  29. M. Weiss. Challenges and artifacts in quantitative photobleaching experiments. Traffic, 5(9):662–71, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Beaudouin or Mario S. Mommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beaudouin, J., Mommer, M.S., Bock, H.G., Eils, R. (2013). Experiment Setups and Parameter Estimation in Fluorescence Recovery After Photobleaching Experiments: A Review of Current Practice. In: Bock, H., Carraro, T., Jäger, W., Körkel, S., Rannacher, R., Schlöder, J. (eds) Model Based Parameter Estimation. Contributions in Mathematical and Computational Sciences, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30367-8_7

Download citation

Publish with us

Policies and ethics