Skip to main content

Nitric Oxide: Biological Synthesis and Functions

  • Chapter
  • First Online:
Gasotransmitters: Physiology and Pathophysiology
  • 810 Accesses

Abstract

The pluripotent gaseous messenger molecule nitric oxide (NO) controls vital functions such as neurotransmission or vascular tone (via activation of soluble guanylyl cyclase), gene transcription, mRNA translation (via iron-responsive elements), and post-translational modifications of proteins (via ADP-ribosylation). In higher concentrations, NO is capable of destroying parasites and tumor cells by inhibiting iron-containing enzymes or directly interacting with the DNA of these cells. In view of this multitude of functions of NO, it is important to understand the mechanisms by which cells accomplish and regulate the production of this molecule. In mammals, three isozymes of NO synthase (NOS; L-arginine, NADPH:oxygen oxidoreductases, nitric oxide forming; EC 1.14.13.39) have been identified. These isoforms are referred to as neuronal “n”NOS (or NOS I), inducible “i”NOS (or NOS II), and endothelial “e”NOS (or NOS III). In pathophysiology, massive amounts of NO produced by hyperactive nNOS or highly expressed iNOS can contribute to processes such as neurodegeneration, inflammation, and tissue damage. This chapter will describe principles of NO biosynthesis, regulatory mechanisms controlling the production of this molecule, and the large array of (physiologic and pathophysiologic) functions that Mother Nature has assigned to this small messenger molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMP:

Adenosine monophosphate

ADMA:

Asymmetric dimethyl-L-arginine

ADP:

Adenosine diphosphate

Ala:

Alanine

Akt:

Serine/threonine kinase (= protein kinase B)

AMPK:

AMP-activated protein kinase

Asp:

Aspartate

AVE9488:

4-fluoro-N-indan-2-yl-benzamide (eNOS expression enhancer)

BH2 :

Quinonoid 6,7-[8H]-H2-biopterin

BH3 . :

Trihydrobiopterin radical

BH3 .H+ :

Trihydropterin radical cation protonated at N5

BH4 :

(6R)-5,6,7,8-tetrahydro-L-biopterin

CAPON:

Carboxy-terminal PDZ ligand of nNOS

CaM:

Calmodulin

CaMK:

Ca2+/Calmodulin-dependent protein kinase

cyclic GMP:

Cyclic guanosine monophosphate

DDAH:

Dimethylarginine dimethylaminohydrolase

Dexras1:

A small monomeric G protein found predominantly in brain

eNOS:

Endothelial nitric oxide synthase

FAD:

Flavin adenine dinucleotide

FMN:

Flavin mononucleotide

GLGF:

Glycine, leucine, glycine, phenylalanine motif

H2O2 :

Hydrogen peroxide

hsp90:

Heat shock protein 90

hsp70:

Heat shock protein 70

iNOS:

Inducible nitric oxide synthase

LLC-PK1 :

Porcine kidney tubular epithelial cells

L-NMMA:

NG-monomethyl-L-arginine

LPS:

Bacterial lipopolysaccharide

mRNA:

Messenger ribonucleic acid

NAP110:

NOS-associated protein 110 kDa

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

NMDA:

N-methyl-D-aspartate

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOSIP:

Nitric oxide synthase interacting protein

O −.2 :

Superoxide anion

ONOO :

Peroxynitrite

PARP:

Poly(ADP-ribose)polymerase

PDZ:

Postsynaptic density protein 95/discs large/ZO-1 homology domain

PIN:

Protein inhibitor of nNOS

PFK-M:

Phosphofructokinase (muscle type)

PKA:

Protein kinase A

PKC:

Protein kinase C

PRMT:

Protein arginine N-methyltransferase

Ser:

Serine

SMTC:

S-methyl-L-thiocitrulline (inhibitor of nNOS)

ROS:

Reactive oxygen species

Thr:

Threonine

Tyr:

Tyrosine

VEGF:

Vascular endothelial growth factor

References

  • Adams ME, Mueller HA, Froehner SC (2001) In vivo requirement of the alpha-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4. J Cell Biol 155(1):113–122. doi:10.1083/jcb.200106158jcb, 200106158[pii]

    Google Scholar 

  • Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9(11):1370–1376. doi:10.1038/nm948, nm948 [pii]

    Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357(Pt 3):593–615

    PubMed  CAS  Google Scholar 

  • Alheid U, Frölich JC, Förstermann U (1987) Endothelium-derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets. Thromb Res 47(5):561–571

    PubMed  CAS  Google Scholar 

  • Antoniades C, Shirodaria C, Leeson P, Antonopoulos A, Warrick N, Van-Assche T, Cunnington C, Tousoulis D, Pillai R, Ratnatunga C, Stefanadis C, Channon KM (2009) Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis. Eur Heart J 30(9):1142–1150. doi:10.1093/eurheartj/ehp061, ehp061 [pii]

    PubMed  CAS  Google Scholar 

  • Arndt H, Smith CW, Granger DN (1993) Leukocyte-endothelial cell adhesion in spontaneously hypertensive and normotensive rats. Hypertension 21(5):667–673

    PubMed  CAS  Google Scholar 

  • Bec N, Gorren AFC, Mayer B, Schmidt PP, Andersson KK, Lange R (2000) The role of tetrahydrobiopterin in the activation of oxygen by nitric-oxide synthase. J Inorg Biochem 81(3):207–211

    PubMed  CAS  Google Scholar 

  • Berkowitz DE, White R, Li D, Minhas KM, Cernetich A, Kim S, Burke S, Shoukas AA, Nyhan D, Champion HC, Hare JM (2003) Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation 108(16):2000–2006

    PubMed  CAS  Google Scholar 

  • Billecke SS, Draganov DI, Morishima Y, Murphy PJ, Dunbar AY, Pratt WB, Osawa Y (2004) The role of hsp90 in heme-dependent activation of apo-neuronal nitric-oxide synthase. J Biol Chem 279(29):30252–30258. doi:10.1074/jbc.M403864200, M403864200 [pii]

    PubMed  CAS  Google Scholar 

  • Bivalacqua TJ, Hellstrom WJ, Kadowitz PJ, Champion HC (2001) Increased expression of arginase II in human diabetic corpus cavernosum: in diabetic-associated erectile dysfunction. Biochem Biophys Res Commun 283(4):923–927

    PubMed  CAS  Google Scholar 

  • Boger RH, Sullivan LM, Schwedhelm E, Wang TJ, Maas R, Benjamin EJ, Schulze F, Xanthakis V, Benndorf RA, Vasan RS (2009) Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation 119(12):1592–1600. doi:10.1161/CIRCULATIONAHA.108.838268 [pii]

    PubMed  Google Scholar 

  • Böger RH, Sydow K, Borlak J, Thum T, Lenzen H, Schubert B, Tsikas D, Bode-Böger SM (2000) LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases. Circ Res 87(2):99–105

    PubMed  Google Scholar 

  • Bohme GA, Bon C, Lemaire M, Reibaud M, Piot O, Stutzmann JM, Doble A, Blanchard JC (1993) Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proc Natl Acad Sci U S A 90(19):9191–9194

    PubMed  CAS  Google Scholar 

  • Boissel JP, Zelenka M, Godtel-Armbrust U, Feuerstein TJ, Forstermann U (2003) Transcription of different exons 1 of the human neuronal nitric oxide synthase gene is dynamically regulated in a cell- and stimulus-specific manner. Biol Chem 384(3):351–362. doi:10.1515/BC.2003.041

    PubMed  CAS  Google Scholar 

  • Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84(5):757–767. doi:S0092-8674(00)81053-3 [pii]

    PubMed  CAS  Google Scholar 

  • Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23(3):153–165. doi:10.1016/j.niox.2010.06.001, S1089-8603(10)00368-X [pii]

    PubMed  CAS  Google Scholar 

  • Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2–3):242–247. doi:10.1007/s12035-010-8105-9

    PubMed  CAS  Google Scholar 

  • Brune B, Dimmeler S, Molina y, Vedia L, Lapetina EG (1994) Nitric oxide: a signal for ADP-ribosylation of proteins. Life Sci 54(2):61–70

    PubMed  CAS  Google Scholar 

  • Busse R, Luckhoff A, Bassenge E (1987) Endothelium-derived relaxant factor inhibits platelet activation. Naunyn Schmiedebergs Arch Pharmacol 336(5):566–571

    PubMed  CAS  Google Scholar 

  • Chanrion B, la Mannoury Cour C, Bertaso F, Lerner-Natoli M, Freissmuth M, Millan MJ, Bockaert J, Marin P (2007) Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity. Proc Natl Acad Sci U S A 104(19):8119–8124. doi:10.1073/pnas.0610964104, 0610964104 [pii]

    PubMed  CAS  Google Scholar 

  • Chen AF, Ren J, Miao CY (2002) Nitric oxide synthase gene therapy for cardiovascular disease. Jpn J Pharmacol 89(4):327–336

    PubMed  CAS  Google Scholar 

  • Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468(7327):1115–1118. doi:10.1038/nature09599, nature09599 [pii]

    PubMed  CAS  Google Scholar 

  • Cho HJ, Xie QW, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Nathan C (1992) Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med 176(2):599–604

    PubMed  CAS  Google Scholar 

  • Closs EI, Scheld JS, Sharafi M, Förstermann U (2000) Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol 57(1):68–74

    PubMed  CAS  Google Scholar 

  • Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA (1998) Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279(5359):2121–2126

    PubMed  CAS  Google Scholar 

  • Cui H, Hayashi A, Sun HS, Belmares MP, Cobey C, Phan T, Schweizer J, Salter MW, Wang YT, Tasker RA, Garman D, Rabinowitz J, Lu PS, Tymianski M (2007) PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci 27(37):9901–9915. doi:10.1523/JNEUROSCI.1464-07.2007, 27/37/9901 [pii]

    PubMed  CAS  Google Scholar 

  • Diet F, Pratt RE, Berry GJ, Momose N, Gibbons GH, Dzau VJ (1996) Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 94(11):2756–2767

    PubMed  CAS  Google Scholar 

  • Dimmeler S, Zeiher AM (1999) Nitric oxide-an endothelial cell survival factor. Cell Death Differ 6(10):964–968. doi:10.1038/sj.cdd.4400581

    PubMed  CAS  Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293(5539):2449–2452

    PubMed  CAS  Google Scholar 

  • Drexler H, Zeiher AM, Meinzer K, Just H (1991) Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet 338(8782–8783):1546–1550

    PubMed  CAS  Google Scholar 

  • Dreyer J, Schleicher M, Tappe A, Schilling K, Kuner T, Kusumawidijaja G, Muller-Esterl W, Oess S, Kuner R (2004) Nitric oxide synthase (NOS)-interacting protein interacts with neuronal NOS and regulates its distribution and activity. J Neurosci 24(46):10454–10465. doi:10.1523/JNEUROSCI.2265-04.2004, 24/46/10454 [pii]

    PubMed  CAS  Google Scholar 

  • Druhan LJ, Forbes SP, Pope AJ, Chen CA, Zweier JL, Cardounel AJ (2008) Regulation of eNOS-derived superoxide by endogenous methylarginines. Biochemistry 47(27):7256–7263. doi:10.1021/bi702377a

    PubMed  CAS  Google Scholar 

  • Drummond GR, Cai H, Davis ME, Ramasamy S, Harrison DG (2000) Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circ Res 86(3):347–354

    PubMed  CAS  Google Scholar 

  • Ehninger D, Kempermann G (2008) Neurogenesis in the adult hippocampus. Cell Tissue Res 331(1):243–250. doi:10.1007/s00441-007-0478-3

    PubMed  Google Scholar 

  • Eliasson MJ, Blackshaw S, Schell MJ, Snyder SH (1997) Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Proc Natl Acad Sci U S A 94(7):3396–3401

    PubMed  CAS  Google Scholar 

  • Elkarib AO, Sheng JJ, Betz AL, Malvin RL (1993) The central effects of a nitric oxide synthase inhibitor (N-omega-nitro-L-arginine) on blood pressure and plasma renin. Clin Exp Hypertens 15(5):819–832

    CAS  Google Scholar 

  • Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH (2000) Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28(1):183–193. doi:S0896-6273(00)00095-7 [pii]

    PubMed  CAS  Google Scholar 

  • Fehsel K, Jalowy A, Qi S, Burkart V, Hartmann B, Kolb H (1993) Islet cell DNA is a target of inflammatory attack by nitric oxide. Diabetes 42(3):496–500

    PubMed  CAS  Google Scholar 

  • Firestein BL, Bredt DS (1999) Interaction of neuronal nitric-oxide synthase and phosphofructokinase-M. J Biol Chem 274(15):10545–10550

    PubMed  CAS  Google Scholar 

  • Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284(1):R1–R12

    PubMed  CAS  Google Scholar 

  • Förstermann U (2000) Regulation of nitric oxide synthase expression and activity. In: Mayer B (ed) Handbook of experimental pharmacology—nitric oxide, vol 143. Springer, Berlin, pp 71–91

    Google Scholar 

  • Förstermann U (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 5(6):338–349. doi:10.1038/ncpcardio1211, ncpcardio1211 [pii]

    PubMed  Google Scholar 

  • Förstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23 (6 Pt 2):1121–1131

    Google Scholar 

  • Förstermann U, Mülsch A, Böhme E, Busse R (1986) Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ Res 58(4):531–538

    PubMed  Google Scholar 

  • Förstermann U, Sessa WC (2011) Nitric oxide synthases: regulation and function. Eur Heart J. doi:10.1093/eurheartj/ehr304, ehr304 [pii]

    PubMed  Google Scholar 

  • Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399(6736):597–601. doi:10.1038/21218

    PubMed  CAS  Google Scholar 

  • Furchgott RF, Cherry PD, Zawadzki JV, Jothianandan D (1984) Endothelial cells as mediators of vasodilation of arteries. J Cardiovasc Pharmacol 53:557–573

    Google Scholar 

  • Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392(6678):821–824. doi:10.1038/33934

    PubMed  CAS  Google Scholar 

  • Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83(5):1774–1777

    PubMed  CAS  Google Scholar 

  • Garthwaite J (1991) Glutamate, nitric oxide and cell–cell signalling in the nervous system. Trends Neurosci 14(2):60–67

    PubMed  CAS  Google Scholar 

  • Gorren AC, Kungl AJ, Schmidt K, Werner ER, Mayer B (2001) Electrochemistry of pterin cofactors and inhibitors of nitric oxide synthase. Nitric Oxide 5(2):176–186

    PubMed  CAS  Google Scholar 

  • Gorren AC, List BM, Schrammel A, Pitters E, Hemmens B, Werner ER, Schmidt K, Mayer B (1996) Tetrahydrobiopterin-free neuronal nitric oxide synthase: evidence for two identical highly anticooperative pteridine binding sites. Biochemistry 35(51):16735–16745

    PubMed  CAS  Google Scholar 

  • Gratton JP, Fontana J, O’Connor DS, Garcia-Cardena G, McCabe TJ, Sessa WC (2000) Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem 275(29):22268–22272. doi:10.1074/jbc.M001644200, M001644200 [pii]

    PubMed  CAS  Google Scholar 

  • Green SJ, Mellouk S, Hoffman SL, Meltzer MS, Nacy CA (1990) Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol Lett 25(1–3):15–19

    PubMed  CAS  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86(5):494–501

    PubMed  CAS  Google Scholar 

  • Gudi T, Hong GK, Vaandrager AB, Lohmann SM, Pilz RB (1999) Nitric oxide and cGMP regulate gene expression in neuronal and glial cells by activating type II cGMP-dependent protein kinase. FASEB J 13(15):2143–2152

    PubMed  CAS  Google Scholar 

  • Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM (2002) Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105(14):1656–1662

    PubMed  CAS  Google Scholar 

  • Han RN, Stewart DJ (2006) Defective lung vascular development in endothelial nitric oxide synthase-deficient mice. Trends Cardiovasc Med 16(1):29–34. doi:10.1016/j.tcm.2005.11.004 , S1050-1738(05)00218-5 [pii]

    PubMed  CAS  Google Scholar 

  • Hausel P, Latado H, Courjault-Gautier F, Felley-Bosco E (2006) Src-mediated phosphorylation regulates subcellular distribution and activity of human inducible nitric oxide synthase. Oncogene 25(2):198–206. doi:10.1038/sj.onc.1209030, 1209030 [pii]

    PubMed  CAS  Google Scholar 

  • Hecker M, Sessa WC, Harris HJ, Anggard EE, Vane JR (1990) The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A 87(21):8612–8616

    PubMed  CAS  Google Scholar 

  • Heitzer T, Krohn K, Albers S, Meinertz T (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with type II diabetes mellitus. Diabetologia 43(11):1435–1438

    PubMed  CAS  Google Scholar 

  • Heller R, Werner-Felmayer G, Werner ER (2006) Antioxidants and endothelial nitric oxide synthesis. Eur J Clin Pharmacol 62(Suppl 13):21–28

    CAS  Google Scholar 

  • Hemmens B, Goessler W, Schmidt K, Mayer B (2000) Role of bound zinc in dimer stabilization but not enzyme activity of neuronal nitric-oxide synthase. J Biol Chem 275(46):35786–35791

    PubMed  CAS  Google Scholar 

  • Hemmens B, Mayer B (1998) Enzymology of nitric oxide synthases. Methods Mol Biol 100:1–32

    PubMed  CAS  Google Scholar 

  • Higashi Y, Sasaki S, Nakagawa K, Fukuda Y, Matsuura H, Oshima T, Chayama K (2002) Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. Am J Hypertens 15(4 Pt 1):326–332

    PubMed  CAS  Google Scholar 

  • Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Förstermann U, Münzel T (2001) Mechanisms Underlying Endothelial Dysfunction in Diabetes Mellitus. Circ Res 88(2):E14–E22

    PubMed  CAS  Google Scholar 

  • Hishikawa K, Nakaki T, Suzuki H, Kato R, Saruta T (1993) Role of L-arginine nitric oxide pathway in hypertension. J Hypertens 11(6):639–645

    PubMed  CAS  Google Scholar 

  • Hogan M, Cerami A, Bucala R (1992) Advanced glycosylation endproducts block the antiproliferative effect of nitric oxide. Role in the vascular and renal complications of diabetes mellitus. J Clin Invest 90(3):1110–1115

    PubMed  CAS  Google Scholar 

  • Holscher C, Rose SP (1992) An inhibitor of nitric oxide synthesis prevents memory formation in the chick. Neurosci Lett 145(2):165–167

    PubMed  CAS  Google Scholar 

  • Hong H-J, Hsiao G, Cheng T-H, Yen M-H (2001) Supplemention with tetrahydrobiopterin suppresses the development of hypertension in spontaneously hypertensive rats. Hypertension 38(5):1044–1048

    PubMed  CAS  Google Scholar 

  • Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377(6546):239–242

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Harbison RG, Wood KS, Kadowitz PJ (1986) Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid. J Pharmacol Exp Ther 237(3):893–900

    PubMed  CAS  Google Scholar 

  • Ilagan RP, Tiso M, Konas DW, Hemann C, Durra D, Hille R, Stuehr DJ (2008) Differences in a conformational equilibrium distinguish catalysis by the endothelial and neuronal nitric-oxide synthase flavoproteins. J Biol Chem 283(28):19603–19615. doi:10.1074/jbc.M802914200 [pii]

    PubMed  CAS  Google Scholar 

  • Imaizumi T, Hirooka Y, Masaki H, Harada S, Momohara M, Tagawa T, Takeshita A (1992) Effects of L-arginine on forearm vessels and responses to acetylcholine. Hypertension 20(4):511–517

    PubMed  CAS  Google Scholar 

  • Iwasaki T, Hori H, Hayashi Y, Nishino T, Tamura K, Oue S, Iizuka T, Ogura T, Esumi H (1999) Characterization of mouse nNOS2, a natural variant of neuronal nitric-oxide synthase produced in the central nervous system by selective alternative splicing. J Biol Chem 274(25):17559–17566

    PubMed  CAS  Google Scholar 

  • Izumi Y, Clifford DB, Zorumski CF (1992) Inhibition of long-term potentiation by NMDA-mediated nitric oxide release. Science 257(5074):1273–1276

    PubMed  CAS  Google Scholar 

  • Izumi Y, Zorumski CF (1993) Nitric oxide and long-term synaptic depression in the rat hippocampus. NeuroReport 4(9):1131–1134

    PubMed  CAS  Google Scholar 

  • Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH (1998) CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron 20(1):115–124. doi:10.1016/S0896-6273(00)80439-0 [pii]

    PubMed  CAS  Google Scholar 

  • Jaffrey SR, Snyder SH (1996) PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science 274(5288):774–777

    PubMed  CAS  Google Scholar 

  • Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98(8):4710–4715. doi:10.1073/pnas.081011098, 98/8/4710 [pii]

    PubMed  CAS  Google Scholar 

  • Jones RJ, Jourd’heuil D, Salerno JC, Smith SM, Singer HA (2007) iNOS regulation by calcium/calmodulin-dependent protein kinase II in vascular smooth muscle. Am J Physiol Heart Circ Physiol 292(6):H2634–H2642. doi:10.1152/ajpheart.01247.2006, 01247.2006 [pii]

    PubMed  CAS  Google Scholar 

  • Kanwar JR, Kanwar RK, Burrow H, Baratchi S (2009) Recent advances on the roles of NO in cancer and chronic inflammatory disorders. Curr Med Chem 16(19):2373–2394

    PubMed  CAS  Google Scholar 

  • Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM (1996) Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci U S A 93(17):9114–9119

    PubMed  CAS  Google Scholar 

  • Kim N, Azadzoi KM, Goldstein I, de Saenz Tejada I (1991) A nitric oxide-like factor mediates nonadrenergic–noncholinergic neurogenic relaxation of penile corpus cavernosum smooth muscle. J Clin Invest 88(1):112–118. doi:10.1172/JCI115266

    PubMed  CAS  Google Scholar 

  • King SM, Barbarese E, Dillman JF 3rd, Patel-King RS, Carson JH, Pfister KK (1996) Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J Biol Chem 271(32):19358–19366

    PubMed  CAS  Google Scholar 

  • Knowles RG, Palacios M, Palmer RM, Moncada S (1989) Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci U S A 86(13):5159–5162

    PubMed  CAS  Google Scholar 

  • Kröncke KD, Kolb-Bachofen V, Berschick B, Burkart V, Kolb H (1991) Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem Biophys Res Commun 175(3):752–758

    PubMed  Google Scholar 

  • Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 88(11):4651–4655

    PubMed  CAS  Google Scholar 

  • Kuncewicz T, Balakrishnan P, Snuggs MB, Kone BC (2001) Specific association of nitric oxide synthase-2 with Rac isoforms in activated murine macrophages. Am J Physiol Renal Physiol 281(2):F326–F336

    PubMed  CAS  Google Scholar 

  • Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2003) Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem 278(25):22546–22554

    PubMed  CAS  Google Scholar 

  • Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111(8):1201–1209

    PubMed  CAS  Google Scholar 

  • Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, Drexler H (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110(14):1933–1939

    PubMed  CAS  Google Scholar 

  • Lange M, Enkhbaatar P, Nakano Y, Traber DL (2009) Role of nitric oxide in shock: the large animal perspective. Front Biosci 14:1979–1989. doi:3357 [pii]

    PubMed  CAS  Google Scholar 

  • Langrehr JM, Hoffman RA, Billiar TR, Lee KK, Schraut WH, Simmons RL (1991) Nitric oxide synthesis in the in vivo allograft response: a possible regulatory mechanism. Surgery 110(2):335–342

    PubMed  CAS  Google Scholar 

  • Laursen JB, Somers M, Kurz S, McCann L, Warnholtz A, Freeman BA, Tarpey M, Fukai T, Harrison DG (2001) Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103(9):1282–1288

    PubMed  CAS  Google Scholar 

  • Lee JH, Yang ES, Park JW (2003) Inactivation of NADP + -dependent isocitrate dehydrogenase by peroxynitrite. Implications for cytotoxicity and alcohol-induced liver injury. J Biol Chem 278(51):51360–51371. doi:10.1074/jbc.M302332200, M302332200 [pii]

    PubMed  CAS  Google Scholar 

  • Lefebvre RA (2002) Pharmacological characterization of the nitrergic innervation of the stomach. Verh K Acad Geneeskd Belg 64(3):151–166

    PubMed  CAS  Google Scholar 

  • Lemaire JF, McPherson PS (2006) Binding of Vac14 to neuronal nitric oxide synthase: Characterisation of a new internal PDZ-recognition motif. FEBS Lett 580(30):6948–6954. doi:10.1016/j.febslet.2006.11.061, S0014-5793(06)01402-5 [pii]

    PubMed  CAS  Google Scholar 

  • Li H, Raman CS, Glaser CB, Blasko E, Young TA, Parkinson JF, Whitlow M, Poulos TL (1999) Crystal structures of zinc-free and -bound heme domain of human inducible nitric-oxide synthase. Implications for dimer stability and comparison with endothelial nitric-oxide synthase. J Biol Chem 274(30):21276–21284

    PubMed  CAS  Google Scholar 

  • Li LM, Kilbourn RG, Adams J, Fidler IJ (1991) Role of nitric oxide in lysis of tumor cells by cytokine-activated endothelial cells. Cancer Res 51(10):2531–2535

    PubMed  CAS  Google Scholar 

  • Lin KY, Ito A, Asagami T, Tsao PS, Adimoolam S, Kimoto M, Tsuji H, Reaven GM, Cooke JP (2002) Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation 106(8):987–992

    PubMed  CAS  Google Scholar 

  • Lin MI, Fulton D, Babbitt R, Fleming I, Busse R, Pritchard KA Jr, Sessa WC (2003) Phosphorylation of threonine 497 in endothelial nitric-oxide synthase coordinates the coupling of L-arginine metabolism to efficient nitric oxide production. J Biol Chem 278(45):44719–44726

    PubMed  CAS  Google Scholar 

  • Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364(6438):626–632. doi:10.1038/364626a0

    PubMed  CAS  Google Scholar 

  • Liu XB, Hill P, Haile DJ (2002) Role of the ferroportin iron-responsive element in iron and nitric oxide dependent gene regulation. Blood Cells Mol Dis 29(3):315–326. doi:S1079979602905723 [pii]

    PubMed  CAS  Google Scholar 

  • MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW, Sokol K, Hutchinson N et al (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81(4):641–650. doi:0092-8674(95)90085-3 [pii]

    PubMed  CAS  Google Scholar 

  • Martasek P, Miller RT, Liu Q, Roman LJ, Salerno JC, Migita CT, Raman CS, Gross SS, Ikeda-Saito M, Masters BS (1998) The C331A mutant of neuronal nitric-oxide synthase is defective in arginine binding. J Biol Chem 273(52):34799–34805

    PubMed  CAS  Google Scholar 

  • Matarredona ER, Murillo-Carretero M, Moreno-Lopez B, Estrada C (2004) Nitric oxide synthesis inhibition increases proliferation of neural precursors isolated from the postnatal mouse subventricular zone. Brain Res 995(2):274–284. doi:S0006899303038484 [pii]

    PubMed  CAS  Google Scholar 

  • McCabe TJ, Fulton D, Roman LJ, Sessa WC (2000) Enhanced electron flux and reduced calmodulin dissociation may explain “calcium-independent” eNOS activation by phosphorylation. J Biol Chem 275(9):6123–6128

    PubMed  CAS  Google Scholar 

  • Melikian N, Seddon MD, Casadei B, Chowienczyk PJ, Shah AM (2009) Neuronal nitric oxide synthase and human vascular regulation. Trends Cardiovasc Med 19(8):256–262. doi:10.1016/j.tcm.2010.02.007, S1050-1738(10)00025-3 [pii]

    PubMed  CAS  Google Scholar 

  • Mikkelsen RB, Wardman P (2003) Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22(37):5734–5754. doi:10.1038/sj.onc.1206663, 1206663 [pii]

    PubMed  CAS  Google Scholar 

  • Miller RT, Martasek P, Raman CS, Masters BS (1999) Zinc content of Escherichia coli-expressed constitutive isoforms of nitric-oxide synthase. Enzymatic activity and effect of pterin. J Biol Chem 274(21):14537–14540

    PubMed  CAS  Google Scholar 

  • Milstien S, Katusic Z (1999) Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun 263(3):681–684

    PubMed  CAS  Google Scholar 

  • Ming XF, Barandier C, Viswambharan H, Kwak BR, Mach F, Mazzolai L, Hayoz D, Ruffieux J, Rusconi S, Montani JP, Yang Z (2004) Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway: implications for atherosclerotic endothelial dysfunction. Circulation 110(24):3708–3714

    PubMed  CAS  Google Scholar 

  • Miyagoe-Suzuki Y, Takeda SI (2001) Association of neuronal nitric oxide synthase (nNOS) with alpha1-syntrophin at the sarcolemma. Microsc Res Tech 55(3):164–170. doi:10.1002/jemt.1167, 1167 [pii]

    PubMed  CAS  Google Scholar 

  • Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Förstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90(4):E58–E65

    PubMed  Google Scholar 

  • Mueller CF, Laude K, McNally JS, Harrison DG (2005) Redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 25(2):274–278

    PubMed  CAS  Google Scholar 

  • Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101(11):2567–2578

    PubMed  CAS  Google Scholar 

  • Nakaki T, Nakayama M, Kato R (1990) Inhibition by nitric oxide and nitric oxide-producing vasodilators of DNA synthesis in vascular smooth muscle cells. Eur J Pharmacol 189(6):347–353

    PubMed  CAS  Google Scholar 

  • Nakane M, Schmidt HH, Pollock JS, Förstermann U, Murad F (1993) Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett 316(2):175–180

    PubMed  CAS  Google Scholar 

  • Nathan CF, Hibbs JB (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3(1):65–70

    PubMed  CAS  Google Scholar 

  • Nickenig G, Baumer AT, Temur Y, Kebben D, Jockenhovel F, Bohm M (1999) Statin-sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. Circulation 100(21):2131–2134

    PubMed  CAS  Google Scholar 

  • Nishimura JS, Martasek P, McMillan K, Salerno J, Liu Q, Gross SS, Masters BS (1995) Modular structure of neuronal nitric oxide synthase: localization of the arginine binding site and modulation by pterin. Biochem Biophys Res Commun 210(2):288–294

    PubMed  CAS  Google Scholar 

  • Noble MA, Munro AW, Rivers SL, Robledo L, Daff SN, Yellowlees LJ, Shimizu T, Sagami I, Guillemette JG, Chapman SK (1999) Potentiometric analysis of the flavin cofactors of neuronal nitric oxide synthase. Biochemistry 38(50):16413–16418

    PubMed  CAS  Google Scholar 

  • Nunokawa Y, Tanaka S (1992) Interferon-gamma inhibits proliferation of rat vascular smooth muscle cells by nitric oxide generation. Biochem Biophys Res Commun 188(1):409–415

    PubMed  CAS  Google Scholar 

  • O’Connor DM, O’Brien T (2009) Nitric oxide synthase gene therapy: progress and prospects. Expert Opin Biol Ther 9(7):867–878. doi:10.1517/14712590903002047

    PubMed  Google Scholar 

  • O’Dell TJ, Hawkins RD, Kandel ER, Arancio O (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci U S A 88(24):11285–11289

    PubMed  Google Scholar 

  • Ohishi M, Ueda M, Rakugi H, Naruko T, Kojima A, Okamura A, Higaki J, Ogihara T (1997) Enhanced expression of angiotensin-converting enzyme is associated with progression of coronary atherosclerosis in humans. J Hypertens 15(11):1295–1302

    PubMed  CAS  Google Scholar 

  • Packer MA, Stasiv Y, Benraiss A, Chmielnicki E, Grinberg A, Westphal H, Goldman SA, Enikolopov G (2003) Nitric oxide negatively regulates mammalian adult neurogenesis. Proc Natl Acad Sci U S A 100(16):9566–9571. doi:10.1073/pnas.1633579100, 1633579100 [pii]

    PubMed  CAS  Google Scholar 

  • Pantopoulos K, Hentze MW (1995) Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc Natl Acad Sci U S A 92(5):1267–1271

    PubMed  CAS  Google Scholar 

  • Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23(2):75–93. doi: 10.1016/j.niox.2010.04.007, S1089-8603(10)00058-3 [pii]

    PubMed  CAS  Google Scholar 

  • Peng HM, Morishima Y, Clapp KM, Lau M, Pratt WB, Osawa Y (2009) Dynamic cycling with Hsp90 stabilizes neuronal nitric oxide synthase through calmodulin-dependent inhibition of ubiquitination. Biochemistry 48(35):8483–8490. doi:10.1021/bi901058g

    PubMed  CAS  Google Scholar 

  • Pollock JS, Förstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, Murad F (1991) Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A 88(23):10480–10484

    PubMed  CAS  Google Scholar 

  • Pozdnyakov N, Lloyd A, Reddy VN, Sitaramayya A (1993) Nitric oxide-regulated endogenous ADP-ribosylation of rod outer segment proteins. Biochem Biophys Res Commun 192(2):610–615. doi:10.1006/bbrc.1993.1459, S0006-291X(83)71459-2 [pii]

    PubMed  CAS  Google Scholar 

  • Pritchard KA Jr, Ackerman AW, Gross ER, Stepp DW, Shi Y, Fontana JT, Baker JE, Sessa WC (2001) Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric-oxide synthase. J Biol Chem 276(21):17621–17624. doi:10.1074/jbc.C100084200, C100084200 [pii]

    PubMed  CAS  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1987) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92(3):639–646

    PubMed  CAS  Google Scholar 

  • Rajfer J, Aronson WJ, Bush PA, Dorey FJ, Ignarro LJ (1992) Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med 326(2):90–94. doi:10.1056/NEJM199201093260203

    PubMed  CAS  Google Scholar 

  • Raman CS, Li H, Martasek P, Kral V, Masters BS, Poulos TL (1998) Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95(7):939–950

    PubMed  CAS  Google Scholar 

  • Rameau GA, Chiu LY, Ziff EB (2004) Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-D-aspartate receptor. J Biol Chem 279(14):14307–14314. doi:10.1074/jbc.M311103200, M311103200 [pii]

    PubMed  CAS  Google Scholar 

  • Rameau GA, Tukey DS, Garcin-Hosfield ED, Titcombe RF, Misra C, Khatri L, Getzoff ED, Ziff EB (2007) Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J Neurosci 27(13):3445–3455. doi:10.1523/JNEUROSCI.4799-06.2007, 27/13/3445 [pii]

    PubMed  CAS  Google Scholar 

  • Rapoport RM, Draznin MB, Murad F (1983) Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306(5939):174–176

    PubMed  CAS  Google Scholar 

  • Ratovitski EA, Alam MR, Quick RA, McMillan A, Bao C, Kozlovsky C, Hand TA, Johnson RC, Mains RE, Eipper BA, Lowenstein CJ (1999a) Kalirin inhibition of inducible nitric-oxide synthase. J Biol Chem 274(2):993–999

    PubMed  CAS  Google Scholar 

  • Ratovitski EA, Bao C, Quick RA, McMillan A, Kozlovsky C, Lowenstein CJ (1999b) An inducible nitric-oxide synthase (NOS)-associated protein inhibits NOS dimerization and activity. J Biol Chem 274(42):30250–30257

    PubMed  CAS  Google Scholar 

  • Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N, Feelisch M, Fukuto J, Wink DA (2004) The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem 385(1):1–10

    PubMed  CAS  Google Scholar 

  • Riefler GM, Firestein BL (2001) Binding of neuronal nitric-oxide synthase (nNOS) to carboxyl-terminal-binding protein (CtBP) changes the localization of CtBP from the nucleus to the cytosol: a novel function for targeting by the PDZ domain of nNOS. J Biol Chem 276(51):48262–48268. doi:10.1074/jbc.M106503200, M106503200 [pii]

    PubMed  CAS  Google Scholar 

  • Rodriguez-Crespo I, Straub W, Gavilanes F, de Ortiz Montellano PR (1998) Binding of dynein light chain (PIN) to neuronal nitric oxide synthase in the absence of inhibition. Arch Biochem Biophys 359(2):297–304. doi:S0003986198909286 [pii]

    PubMed  CAS  Google Scholar 

  • Rosen RC, Kostis JB (2003) Overview of phosphodiesterase 5 inhibition in erectile dysfunction. Am J Cardiol 92 (9A):9M–18M. doi:S0002914903008245 [pii]

    Google Scholar 

  • Rosenkranz-Weiss P, Sessa WC, Milstien S, Kaufman S, Watson CA, Pober JS (1994) Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J Clin Invest 93(5):2236–2243

    PubMed  CAS  Google Scholar 

  • Rossitch E, Alexander E, Black PM, Cooke JP (1991) L-arginine normalizes endothelial function in cerebral vessels from hypercholesterolemic rabbits. J Clin Invest 87(4):1295–1299

    PubMed  CAS  Google Scholar 

  • Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC (1998) Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest 101(4):731–736

    PubMed  CAS  Google Scholar 

  • Saitoh F, Tian QB, Okano A, Sakagami H, Kondo H, Suzuki T (2004) NIDD, a novel DHHC-containing protein, targets neuronal nitric-oxide synthase (nNOS) to the synaptic membrane through a PDZ-dependent interaction and regulates nNOS activity. J Biol Chem 279(28):29461–29468. doi:10.1074/jbc.M401471200, M401471200 [pii]

    PubMed  CAS  Google Scholar 

  • Sakuma I, Togashi H, Yoshioka M, Saito H, Yanagida M, Tamura M, Kobayashi T, Yasuda H, Gross SS, Levi R (1992) NG-methyl-L-arginine, an inhibitor of L-arginine-derived nitric oxide synthesis, stimulates renal sympathetic nerve activity in vivo. A role for nitric oxide in the central regulation of sympathetic tone? Circ Res 70(3):607–611

    PubMed  CAS  Google Scholar 

  • Sasaki K, Heeschen C, Aicher A, Ziebart T, Honold J, Urbich C, Rossig L, Koehl U, Koyanagi M, Mohamed A, Brandes RP, Martin H, Zeiher AM, Dimmeler S (2006) Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc Natl Acad Sci U S A 103(39):14537–14541

    PubMed  CAS  Google Scholar 

  • Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284(5421):1845–1848

    PubMed  CAS  Google Scholar 

  • Schleicher M, Yu J, Murata T, Derakhshan B, Atochin D, Qian L, Kashiwagi S, Di Lorenzo A, Harrison KD, Huang PL, Sessa WC (2009) The Akt1-eNOS axis illustrates the specificity of kinase-substrate relationships in vivo. Sci Signal 2 (82):ra41

    Google Scholar 

  • Schmidt PP, Lange R, Gorren AC, Werner ER, Mayer B, Andersson KK (2001) Formation of a protonated trihydrobiopterin radical cation in the first reaction cycle of neuronal and endothelial nitric oxide synthase detected by electron paramagnetic resonance spectroscopy. J Biol Inorg Chem 6(2):151–158

    PubMed  CAS  Google Scholar 

  • Schuman EM, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254(5037):1503–1506

    PubMed  CAS  Google Scholar 

  • Schwarz PM, Kleinert H, Förstermann U (1999) Potential functional significance of brain-type and muscle-type nitric oxide synthase I expressed in adventitia and media of rat aorta. Arterioscler Thromb Vasc Biol 19(11):2584–2590

    PubMed  CAS  Google Scholar 

  • Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 93(23):13176–13181

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Kashiwagi A, Nishio Y, Okamura T, Yoshida Y, Masada M, Toda N, Kikkawa R (1999) Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2- imbalance in insulin-resistant rat aorta. Diabetes 48(12):2437–2445

    PubMed  CAS  Google Scholar 

  • Sibal L, Agarwal SC, Schwedhelm E, Luneburg N, Boger RH, Home PD (2009) A study of endothelial function and circulating asymmetric dimethylarginine levels in people with type 1 diabetes without macrovascular disease or microalbuminuria. Cardiovasc Diabetol 8:27. doi:10.1186/1475-2840-8-27, 1475-2840-8-27 [pii]

    PubMed  Google Scholar 

  • Simon A, Plies L, Habermeier A, Martine U, Reining M, Closs EI (2003) Role of neutral amino acid transport and protein breakdown for substrate supply of nitric oxide synthase in human endothelial cells. Circ Res 93(9):813–820

    PubMed  CAS  Google Scholar 

  • Song T, Hatano N, Horii M, Tokumitsu H, Yamaguchi F, Tokuda M, Watanabe Y (2004) Calcium/calmodulin-dependent protein kinase I inhibits neuronal nitric-oxide synthase activity through serine 741 phosphorylation. FEBS Lett 570(1–3):133–137. doi:10.1016/j.febslet.2004.05.083, S0014579304007665 [pii]

    PubMed  CAS  Google Scholar 

  • Song Y, Cardounel AJ, Zweier JL, Xia Y (2002) Inhibition of superoxide generation from neuronal nitric oxide synthase by heat shock protein 90: implications in NOS regulation. Biochemistry 41(34):10616–10622

    PubMed  CAS  Google Scholar 

  • Southgate K, Newby AC (1990) Serum-induced proliferation of rabbit aortic smooth muscle cells from the contractile state is inhibited by 8-Br-cAMP but not 8-Br-cGMP. Atherosclerosis 82(1–2):113–123

    PubMed  CAS  Google Scholar 

  • Sowa G, Pypaert M, Sessa WC (2001) Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc Natl Acad Sci U S A 98(24):14072–14077

    PubMed  CAS  Google Scholar 

  • Steinert JR, Chernova T, Forsythe ID (2010) Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 16(4):435–452. doi:10.1177/1073858410366481, 16/4/435 [pii]

    PubMed  CAS  Google Scholar 

  • Stroes E, Kastelein J, Cosentino F, Erkelens W, Wever R, Koomans H, Luscher T, Rabelink T (1997) Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 99(1):41–46

    PubMed  CAS  Google Scholar 

  • Stuehr D, Pou S, Rosen GM (2001) Oxygen reduction by nitric-oxide synthases. J Biol Chem 276(18):14533–14536

    PubMed  CAS  Google Scholar 

  • Sud N, Wells SM, Sharma S, Wiseman DA, Wilham J, Black SM (2008) Asymmetric dimethylarginine inhibits HSP90 activity in pulmonary arterial endothelial cells: role of mitochondrial dysfunction. Am J Physiol Cell Physiol 294(6):C1407–C1418. doi:10.1152/ajpcell.00384.2007, 00384.2007 [pii]

    PubMed  CAS  Google Scholar 

  • Sydow K, Munzel T (2003) ADMA and oxidative stress. Atheroscler Suppl 4(4):41–51

    PubMed  CAS  Google Scholar 

  • Tochio H, Mok YK, Zhang Q, Kan HM, Bredt DS, Zhang M (2000) Formation of nNOS/PSD-95 PDZ dimer requires a preformed beta-finger structure from the nNOS PDZ domain. J Mol Biol 303(3):359–370. doi:10.1006/jmbi.2000.4148, S0022-2836(00)94148-2 [pii]

    PubMed  CAS  Google Scholar 

  • Toda N, Ayajiki K, Okamura T (2009) Control of systemic and pulmonary blood pressure by nitric oxide formed through neuronal nitric oxide synthase. J Hypertens 27(10):1929–1940. doi:10.1097/HJH.0b013e32832e8ddf

    PubMed  CAS  Google Scholar 

  • Togashi H, Sakuma I, Yoshioka M, Kobayashi T, Yasuda H, Kitabatake A, Saito H, Gross SS, Levi R (1992) A central nervous system action of nitric oxide in blood pressure regulation. J Pharmacol Exp Ther 262(1):343–347

    PubMed  CAS  Google Scholar 

  • Tøttrup A, Svane D, Forman A (1991) Nitric oxide mediating NANC inhibition in opossum lower esophageal sphincter. Am J Physiol 260:G385–G389

    PubMed  Google Scholar 

  • Turko IV, Ballard SA, Francis SH, Corbin JD (1999) Inhibition of cyclic GMP-binding cyclic GMP-specific phosphodiesterase (type 5) by sildenafil and related compounds. Mol Pharmacol 56(1):124–130

    PubMed  CAS  Google Scholar 

  • Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA Jr (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A 95(16):9220–9225

    PubMed  CAS  Google Scholar 

  • Vaziri ND, Ni Z, Oveisi F (1998) Upregulation of renal and vascular nitric oxide synthase in young spontaneously hypertensive rats. Hypertension 31(6):1248–1254

    PubMed  CAS  Google Scholar 

  • Vergnani L, Hatrik S, Ricci F, Passaro A, Manzoli N, Zuliani G, Brovkovych V, Fellin R, Malinski T (2000) Effect of native and oxidized low-density lipoprotein on endothelial nitric oxide and superoxide production : key role of L-arginine availability. Circulation 101(11):1261–1266

    PubMed  CAS  Google Scholar 

  • Wells SM, Holian A (2007) Asymmetric dimethylarginine induces oxidative and nitrosative stress in murine lung epithelial cells. Am J Respir Cell Mol Biol 36(5):520–528. doi:10.1165/rcmb.2006-0302SM, 2006-0302SM [pii]

    PubMed  CAS  Google Scholar 

  • Werner ER, Gorren AC, Heller R, Werner-Felmayer G, Mayer B (2003) Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects. Exp Biol Med 228(11):1291–1302

    CAS  Google Scholar 

  • Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Schmidt K, Weiss G, Wachter H (1993) Pteridine biosynthesis in human endothelial cells. Impact on nitric oxide-mediated formation of cyclic GMP. J Biol Chem 268(3):1842–1846

    PubMed  CAS  Google Scholar 

  • White CR, Brock TA, Chang LY, Crapo J, Briscoe P, Ku D, Bradley WA, Gianturco SH, Gore J, Freeman BA, Tarpey MM (1994) Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci U S A 91(3):1044–1048

    PubMed  CAS  Google Scholar 

  • Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS, Keefer JK (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254(5034):1001–1003

    PubMed  CAS  Google Scholar 

  • Wohlfart P, Xu H, Endlich A, Habermeier A, Closs EI, Hubschle T, Mang C, Strobel H, Suzuki T, Kleinert H, Förstermann U, Ruetten H, Li H (2008) Antiatherosclerotic effects of small-molecular-weight compounds enhancing endothelial nitric-oxide synthase (eNOS) expression and preventing eNOS uncoupling. J Pharmacol Exp Ther 325(2):370–379

    PubMed  CAS  Google Scholar 

  • Xu W, Kaneko FT, Zheng S, Comhair SA, Janocha AJ, Goggans T, Thunnissen FB, Farver C, Hazen SL, Jennings C, Dweik RA, Arroliga AC, Erzurum SC (2004) Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J 18(14):1746–1748

    PubMed  CAS  Google Scholar 

  • Yoshida M, Xia Y (2003) Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase. J Biol Chem 278(38):36953–36958. doi:10.1074/jbc.M305214200, M305214200 [pii]

    PubMed  CAS  Google Scholar 

  • Zeiher AM, Fisslthaler B, Schray-Utz B, Busse R (1995) Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 76(6):980–986

    PubMed  CAS  Google Scholar 

  • Zhang R, Zhang L, Zhang Z, Wang Y, Lu M, Lapointe M, Chopp M (2001) A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann Neurol 50(5):602–611

    PubMed  CAS  Google Scholar 

  • Zhou L, Zhu DY (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20(4):223–230. doi:10.1016/j.niox.2009.03.001, S1089-8603(09)00036-6 [pii]

    PubMed  CAS  Google Scholar 

  • Zhou QG, Hu Y, Hua Y, Hu M, Luo CX, Han X, Zhu XJ, Wang B, Xu JS, Zhu DY (2007) Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J Neurochem 103(5):1843–1854. doi:10.1111/j.1471-4159.2007.04914.x, JNC4914 [pii]

    PubMed  CAS  Google Scholar 

  • Zou MH, Shi C, Cohen RA (2002) Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 109(6):817–826

    PubMed  CAS  Google Scholar 

  • Zweier J, Chen CA, Druhan LJ (2011) S-glutathionylation reshapes our understanding of eNOS uncoupling and NO/ROS-mediated signaling. Antioxid Redox Signal 14:1769–1775. doi:10.1089/ars.2011.3904

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work from our laboratory mentioned in this chapter has been made possible by the Collaborative Research Center (Sonderforschungsbereich) 553 (Project A1 to H.L. and U.F.) and by Individual Grant LI-1042/1-1 from the German Research Foundation (Deutsche Forschungsgemeinschaft), and by the Integrated Research and Treatment Center “Thrombosis and Hemostasis” of the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF 01EO1003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Förstermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Förstermann, U., Li, H. (2012). Nitric Oxide: Biological Synthesis and Functions. In: Hermann, A., Sitdikova, G., Weiger, T. (eds) Gasotransmitters: Physiology and Pathophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30338-8_1

Download citation

Publish with us

Policies and ethics