Skip to main content

Noble Gases and Halogens in Fluid Inclusions: A Journey Through the Earth’s Crust

  • Chapter
The Noble Gases as Geochemical Tracers

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Fluid inclusions provide the only means possible for sampling fluids from the Earth's deep-interior and ancient past. Noble gas isotope analysis can provide quantitative information about the sources of volatile components in fluid inclusions (e.g. atmosphere, crust and mantle), whereas halogens provide complementary information about the fluids, acquisition of salinity and/or the presence of (I-rich) organic components. The aims of this chapter are to: (1) review methods for analysis of noble gases in fluid inclusions, and halogen analysis by the ‘noble gas method’ (extended 40Ar–39Ar methodology); and (2) summarise case studies of noble gases and halogens in fluid inclusions. The case studies include hydrothermal fluids involved in ore genesis in a range of geological environments encompassing mid-ocean ridge vents, sedimentary basins, near-pluton magmatic environments and metamorphic settings, as well as fluid inclusions in eclogite facies high-grade terranes relevant to subduction recycling processes. In contrast to modern ground waters, the fluid inclusion data suggest that most crustal fluids source some (additional) atmospheric noble gases within the crust (from sediments and hydrous minerals formed during seawater-alteration), and that low salinity fluids can acquire significant Br, as well as I, from organic-rich (meta-)sediments. Fluid–rock interactions are an important control on the composition of deep-crustal fluids; however, the orders of magnitude variation in noble gas isotope compositions and halogen abundances mean that they can preserve information about fluid sources that is overprinted in other stable and radiogenic isotope systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrajano TA, Sturchio NC, Bohlke JK, Lyon GL, Poreda RJ, Stevens CM (1988) Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin? Chem Geol 71(1–3):211–222

    Google Scholar 

  • Abrajano TA, Sturchio NC, Kennedy BM, Lyon GL, Muehlenbachs K, Bohlke JK (1990) Geochemistry of reduced gas related to serpentinisation of the zambales Ophiolite, Phillippines. Appl Geochem 5(5–6):625–630

    Google Scholar 

  • Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (2000) Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature 405(6790):1040–1044

    Google Scholar 

  • Amari S, Ozima M (1988) Extra-terrestrial noble gases in deep sea sediments. Geochim Cosmochim Acta 52(5):1087–1095

    Google Scholar 

  • Andrew AS, Heinrich CA, Wilkins RWT, Patterson DJ (1989) Sulfur isotope systematics of copper ore formation at Mount Isa. Australia Econ Geol 84:1614–1626

    Google Scholar 

  • Andrews JN, Giles IS, Kay RLF, Lee DJ, Osmond JK, Cowart JB, Fritz P, Barker JF, Gale J (1982) Radioelements, radiogenic helium and age relationships for groundwaters from the Granites at Stripa, Sweden. Geochim Cosmochim Acta 46(9):1533–1543

    Google Scholar 

  • Andrews JN, Hussain N, Youngman MJ (1989) Atmospheric and radiogenic gases in groundwaters from the Stripa granite. Geochim Cosmochim Acta 53(8):1831–1841

    Google Scholar 

  • Andrews JN, Kay RLF (1982) Natural production of tritium in permeable rocks. Nature 298(5872):361–363

    Google Scholar 

  • Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicaters of age and paleoclimate trends. J Hydrol 41:233

    Google Scholar 

  • Arnaud NO, Kelley SP (1995) Evidence for excess argon during high pressure metamorphism in the Dora Maira Massif (western Alps, Italy), using an ultra-violet laser ablation microprobe 40Ar–39Ar technique. Contrib Miner Petrol 121(1):1–11

    Google Scholar 

  • Bach W, Frueh-Green GL (2010) Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6(3):173–178

    Google Scholar 

  • Baker ET, Lupton JE (1990) Changes in submarien Hydrothermal 3He/Heat ratios as an indicator of magmatic tectonic activity. Nature 346(6284):556–558

    Google Scholar 

  • Baker ET, Lupton JE, Resing JA, Baumberger T, Lilley MD, Walker SL, Rubin KH (2011) Unique event plumes from a 2008 eruption on the Northeast Lau Spreading Center. Geochem Geophys, Geosyst 12

    Google Scholar 

  • Baker T (2002) Emplacement depth and carbon dioxide-rich fluid inclusions in intrusion-related gold deposits. Econ Geol Bull Soc Econ Geol 97(5):1111–1117

    Google Scholar 

  • Ballentine CJ, Barfod DN (2000) The origin of air-like noble gases in MORB and OIB. Earth Planet Sci Lett 180(1–2):39–48

    Google Scholar 

  • Ballentine CJ, Burgess R, Marty B (2002) Tracing fluid origin, transport and interaction in the crust. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble Gases in Geochemistry and Cosmochemistry, vol 47. Geochemical Society/Mineralogical Society of America, pp 539–614

    Google Scholar 

  • Ballentine CJ, Burnard PG (2002) Production, release and transport of noble gases in the continental crust. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, vol 47. Geochemical society/Mineralogical Society of America, pp 481–538

    Google Scholar 

  • Ballentine CJ, Mazurek M, Gautschi A (1994) Thermal constraints on crustal rare gas release and migration: evidence from Alpine fluid inclusions. Geochim Cosmochim Acta 58:4333–4348

    Google Scholar 

  • Ballentine CJ, O’Nions RK, Oxburgh ER, Horvath F, Deak J (1991) Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth Planet Sci Lett 105(1–3):229–246

    Google Scholar 

  • Banks DA, Green R, Cliff RA, Yardley BWD (2000) Chlorine isotopes in fluid inclusions: determination of the origins of salinity in magmatic fluids. Geochim Cosmochim Acta 64:1785–1789

    Google Scholar 

  • Barton MD, Johnson DA (1996) Evaporitic-source model for igneous related Fe oxide (REE-Cu-Au-U) mineralization. Geology 24:259–262

    Google Scholar 

  • Bein A, Hovorka SD, Fisher RS, Roedder E (1991) Fluid Inclusions in Bedded Permian Halite, Palo Duro Basin, Texas: evidence for modification of seawater in evaporite Brine-pools and subsequent early diagenesis. J Sediment Petrol 61(1):1–14

    Google Scholar 

  • Berndt ME, Seyfried WE (1990) Boron, Bromine and other trace-elements as clues to the fate of chlorine in midocean ridge vent fluids. Geochimica et Cosmochimica Acta 54:2235–2245

    Google Scholar 

  • Biester H, Keppler F, Putschew A, Martinez-Cortizas A, Petri M (2004) Halogen retention, organohalogens, and the role of organic matter decomposition on halogen enrichment in two Chilean peat bogs. Environ Sci Technol 38(7):1984–1991

    Google Scholar 

  • Bodnar RJ (2003) Interpretation of data from aqueous-electrolyte fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions analysis and interpretation, vol 32. Mineralogical Association of Canada, Vancouver, British Columbia, pp 81–101

    Google Scholar 

  • Bodnar RJ, Binns PR, Hall DL (1989) Synthetic fluid inclusions: VI. Quantitative evaluation of the decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure. J Metamorph Geol 7:229–242

    Google Scholar 

  • Böhlke JK, Irwin JJ (1992a) Brine histroy indicated by Argon, Krypton, Chlorine, Bromine and Iodine analyses of fluid inclusions from the Mississippi Valley Type Lead-Fluorite-Barite deposits at Hansonburg, New-Mexico. Earth Planet Sci Lett 110(1–4):51–66

    Google Scholar 

  • Böhlke JK, Irwin JJ (1992b) Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions: analyses of microstandards and synthetic inclusions in quartz. Geochim Cosmochim Acta 56:187–201

    Google Scholar 

  • Böhlke JK, Irwin JJ (1992c) Laserprobe analyses of Cl, Br, I, and K in fluid inclusions: implications for the sources of salinity in some ancient hydrothermal fluids. Geochim Cosmochim Acta 56:203–225

    Google Scholar 

  • Bosch A, Mazor E (1988) Natural-gas association with water and oil as depicted by atmospheric noble-gases: case studies from the southeastern Mediterranean coastal-plain. Earth Planet Sci Lett 87(3):338–346

    Google Scholar 

  • Boschmann W, Becker R, Lippolt HJ (1984) Eignungsprufung von Erzmineralien fur U + Th/He Datiering. Verlag-Chemie, 361–373

    Google Scholar 

  • Boundy TM, Hall CM, Li G, Essene EJ, Halliday AN (1997) Fine-scale isotopic heterogeneities and fluids in the deep crust: a 40Ar/39Ar laser ablation and TEM study of muscovites from a granulite-eclogite transition zone. Earth Planet Sci Lett 148(1–2):223–242

    Google Scholar 

  • Burgess R, Taylor RP, Fallick AE, Kelley SP (1992) 40Ar/39Ar laser microprobe study of fluids in different color zones of a hydrothermal scheelite crystal from the Dae-Hwa W Mine, South Korea. Chemi Geol 102(1–4):259–267

    Google Scholar 

  • Burnard P, Graham D, Turner G (1997) Vesicle-specific noble gas analyses of “popping rock” implications for primordial noble gases in the Earth. Science 276:568–571

    Google Scholar 

  • Burnard P, Harrison D (2005) Argon isotope constraints on modification of oxygen isotopes in Iceland Basalts by surficial processes. Chem Geol 216(1–2):143–156

    Google Scholar 

  • Burnard PG, Hu R, Turner G, Bi XW (1999) Mantle, crustal and atmospheric noble gases in Ailaoshan Gold deposits, Yunnan Province, China. Geochim Cosmochim Acta 63(10):1595–1604

    Google Scholar 

  • Burnard PG, Polya DA (2004) Importance of mantle derived fluids during granite associated hydrothermal circulation: He and Ar isotopes of ore minerals from Panasqueira. Geochim Cosmochim Acta 68(7):1607–1615

    Google Scholar 

  • Burnard PG, Stuart F, Turner G (1994) C–He–Ar variations within a dunite nodule as a function of fluid inclusion morphology. Earth Planet Sci Lett 128(3–4):243–258

    Google Scholar 

  • Butterfield AW, Turner G (1985) Ancient argon in cherts. Terra Cognita 5:201–202

    Google Scholar 

  • Cadogan PH (1977) Palaeoatmospheric argon in Rhynie chert. Nature 268:38

    Google Scholar 

  • Carpenter AB, Trout ML, Pickett EE (1974) Preliminary report on the origin and chemical evolution of lead- and zinc-rich oil field brines in central Mississippi. Econ Geol 69:1191–1206

    Google Scholar 

  • Castro MC, Hall CM, Patriarche D, Goblet P, Ellis BR (2007) A new noble gas paleoclimate record in Texas: basic assumptions revisited. Earth Planet Sci Lett 257(1–2):170–187

    Google Scholar 

  • Champion DC, Sheraton JW (1997) Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: implications for crustal growth processes. Precambr Res 83(1–3):109–132

    Google Scholar 

  • Chang J (2011) Table of Nuclides, KAERI (Korea Atomic Energy Research Institute). Available at: http://atom.kaeri.re.kr/ton/. Retrieved Feb 2011

  • Chi GX, Savard MM (1997) Sources of basinal and Mississippi Valley-type mineralizing brines: mixing of evaporated seawater and halite-dissolution brine. Chem Geol 143(3–4):121–125

    Google Scholar 

  • Cline JS, Bodnar RJ (1991) Can economic porphyry copper mineralization be generated by a typical Calc-Alkaline Melt? J Geophys Res Solid Earth and Planets 96(B5):8113–8126

    Google Scholar 

  • Collins AG, Bennett JH, Manuel OK (1971) Iodine and Algae in Sedimentary Rocks Associated with Iodine-Rich Brines Geol Soc Am Bull 82(9):2607

    Google Scholar 

  • Connors KA, Page RW (1995) Relationships between magmatism, metamorphism and deformation in the western Mount Isa Inlier, Australia. Precambr Res 71:131–153

    Google Scholar 

  • Crocetti CA, Holland HD (1989) Sulfur-lead isotope systematics and the composition of fluid inclusions in Galena from the Viburnum trend. Missouri Econ Geol 84:2196–2216

    Google Scholar 

  • Drescher J, Kirsten T, Schäfer K (1998) The rare gas inventory of the continental crust, recovered by the KTB Continental Deep Drilling Project. Earth Planet Sci Lett 154(1–4):247–263

    Google Scholar 

  • Drever JI (1997) The geochemistry of natural waters: surface and groundwater environments, vol. Prentice-Hall Inc, Upper Saddle River, New Jersey

    Google Scholar 

  • Duncan RJ, Stein HJ, Evans KA, Hitzman MW, Nelson EP, Kirwin DJ (2011) A new geochronological framework for mineralization and alteration in the Selwyn-Mount Dore Corridor, Eastern Fold Belt, Mount Isa Inlier, Australia: genetic implications for iron oxide copper–gold deposits. Econ Geol 106(2):169–192

    Google Scholar 

  • Elmer FL, White RW, Powell R (2006) Devolatilization of metabasic rocks during greenschist-amphibolite facies metamorphism. J Metamorph Geol 24(6):497–513

    Google Scholar 

  • Ernst WG (1971) Metamorphic Zonations on Presumably Subducted Lithospheric Plates from Japan, California and Alps. Contributions to Mineralogy and Petrology 34(1):43

    Google Scholar 

  • Etminan H, Hoffmann CF (1989) Biomarkers in fluid inclusions: a new tool in constraining source regimes and its implications for the genesis of Mississippi Valley-type deposits. Geology 17(1):19–22

    Google Scholar 

  • Eugster O, Niedermann S, Thalmann C, Frei R, Kramers J, Krahenbuhl U, Liu YZ, Hofmann B, Boer RH, Reimold WU, Bruno L (1995) Noble gases, K, U, Th, and Pb in native gold. J Geophys Res-Solid Earth 100(B12):24677–24689

    Google Scholar 

  • Fairmaid AM, Kendrick MA, Phillips D, Fu B (2011) The origin and evolution of mineralizing fluids in a sediment-hosted orogenic-gold deposit, Ballarat East. Southeastern Australia. Econ Geol 106(4):653–666

    Google Scholar 

  • Fehn U, Lu Z, Tomaru H (2006) 129I/I ratios and halogen concentrations in pore water of Hydrate Ridge and their relevence for the origin of gas hydrates: a progress report. In: Trehu AM, Bohrmann G, Torres ME, Colwell FS (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 204. pp 1–25

    Google Scholar 

  • Fehn U, Moran JE, Snyder GT, Muramatsu Y (2007) The initial 129I/I ratio and the presence of ′old′ iodine in continental margins. Nucl Instrum Methods Phys Res Sect B 259(1):496–502

    Google Scholar 

  • Fehn U, Snyder G, Egeberg PK (2000) Dating of pore waters with I-129: Relevance for the origin of marine gas hydrates. Science 289(5488):2332–2335

    Google Scholar 

  • Fehn U, Snyder GT, Matsumoto R, Muramatsu Y, Tomaru H (2003) Iodine dating of pore waters associated with gas hydrates in the Nankai area. Japan Geology 31(6):521–524

    Google Scholar 

  • Ferguson J, Etminan H, Ghassemi F (1993) Geochemistry of deep formation waters in the canning Basin, Western Australia and their relationship to Zn-Pb mineralisation. Aust J Earth Sci 40(5):471–483

    Google Scholar 

  • Fisher L, Kendrick MA (2008) Metamorphic fluid origins in the Osborne Fe oxide–Cu–Au deposit, Australia: evidence from noble gases and halogens. Miner Deposita 43:483–497

    Google Scholar 

  • Fontes JC, Andrews JN, Walgenwitz F (1991) Evaluation de la production naturelle in situ d’argon-36 via le chlore-36; implications geochimiques et geochronologiques; Evaluation of natural in situ production of argon-36 via chlorine-36; geochemical and geochronological implications. Comptes Rendus de l’Academie des Sciences, Serie 2, Mecanique, Physique, Chimie, Sciences de l’Univers, Sciences de la Terre 313(6):649–654

    Google Scholar 

  • Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from the Paris Basin, France 1. Brines associated with Triassic salts. Chem Geol 109:149–175

    Google Scholar 

  • Foster DRW, Rubenach MJ (2006) Isograd pattern and regional low pressure, high-temperature metamorphism of pelitic, mafic and calc-silicate rocks along an east-west section through the Mt Isa Inlier. Aust J Earth Sci 53:167–186

    Google Scholar 

  • Fu B, Kendrick MA, Fairmaid AM, Phillips D, Wilson CJL, Mernagh TP (2012) New constraints on fluid sources in orogenic gold deposits, Victoria, Australia. Contrib Miner Petrol 163:427–447

    Google Scholar 

  • Fu B, Touret JLR, Zheng YF (2001) Fluid inclusions in coesite-bearing eclogites and jadeite quartzite at Shuanghe, Dabie Shan (China). J Metamorph Geol 19(5):531–547

    Google Scholar 

  • Fu B, Zheng Y-F, Touret JLR (2002) Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China). Chem Geol 187(1–2):107–128

    Google Scholar 

  • Fuge R, Johnson CC (1986) The geochemistry of iodine: a review. Environ Geochem Health 8:31–54

    Google Scholar 

  • Garven G, Raffensperger JP (1997) Hydrology and geochemistry of ore genesis in sedimentary basins. In: Barnes HL (ed) The Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 125–190

    Google Scholar 

  • Gilfillan SMV, Ballentine CJ, Holland G, Blagburn D, Lollar BS, Stevens S, Schoell M, Cassidy M (2008) The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochim Cosmochim Acta 72(4):1174–1198

    Google Scholar 

  • Gilfillan SMV, Lollar BS, Holland G, Blagburn D, Stevens S, Schoell M, Cassidy M, Ding Z, Zhou Z, Lacrampe-Couloume G, Ballentine CJ (2009) Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458(7238):614–618

    Google Scholar 

  • Giorgis D, Cosca M, Li S (2000) Distribution and significance of extraneous argon in UHP eclogite (Sulu terrain, China): insight from in situ 40Ar/39Ar UV-laser ablation analysis. Earth Planet Sci Lett 181(4):605–615

    Google Scholar 

  • Gize AP, Barnes HL (1987) The organic geochemistry of two mississippi valley-type lead-zinc deposits. Econ Geol 82(2):457–470

    Google Scholar 

  • Goldfarb RJ, Groves DI, Gardoll S (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18(1–2):1–75

    Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: characterisation of mantle source reservoirs. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble Gases in Geochemistry and Cosmochemistry, vol 47. pp 245–317

    Google Scholar 

  • Graupner T, Niedermann S, Kempe U, Klemd R, Bechtel A (2006) Origin of ore fluids in the Muruntau gold system: constraints from noble gas, carbon isotope and halogen data. Geochim Cosmochim Acta 70(21):5356–5370

    Google Scholar 

  • Graupner T, Niedermann S, Rhede D, Kempe U, Seltmann R, Williams CT, Klemd R (2010) Multiple sources for mineralizing fluids in the Charmitan gold (-tungsten) mineralization (Uzbekistan). Miner Deposita 45(7):667–682

    Google Scholar 

  • Gregory M, Schaefer B, Keays R, Wilde A (2008) Rhenium–osmium systematics of the Mount Isa copper orebody and the Eastern Creek Volcanics, Queensland, Australia: implications for ore genesis. Miner Deposita 43(5):553–573

    Google Scholar 

  • Groves DI, Goldfarb RJ, Robert F, Hart CJR (2003) Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Econ Geol Bull Soc Econ Geol 98(1):1–29

    Google Scholar 

  • Hanor JS (1994) Origin of saline fluids in sedimentary basins. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in Sedimentary Basins, vol 78. Geological Society Special Publication, pp 151–174

    Google Scholar 

  • Heinrich CA, Andrew AS, Wilkins WT, Patterson DJ (1989) A fluid inclusion and stable isotope study of synmetamorphic copper ore formation at Mount Isa. Australia Econ Geol 84:529–550

    Google Scholar 

  • Heinrich CA, Bain JHC, Fardy JJ, Waring CL (1993) Br/Cl geochemistry of hydrothermal brines associated with Proterozoic metasediment-hosted copper mineralisation at Mount Isa, northern Australia. Geochim Cosmochim Acta 57:2991–3000

    Google Scholar 

  • Heinrich CA (2003) Fluid-fluid interactions in magmatic-hydrothermal ore formation. In: Liebscher A, Heinrich CA (eds) Fluid-fluid interactions, vol 65. Mineralogical Society of America, Geochem Soc, pp 363–387

    Google Scholar 

  • Hermann AG (1980) Bromide distribution between halite and NaCl-saturated seawater. Chem Geol 28:171–177

    Google Scholar 

  • Heyl AV, Landis GP, Zartman RE (1974) Isotopic evidence for the origin of Mississippi Valley-Type mineral deposits: a review. Econ Geol 69(6):992–1006

    Google Scholar 

  • Hitchon B (2006) Lead and zinc in formation waters, Alberta Basin, Canada: Their relation to the Pine Point ore fluid. Appl Geochem 21(1):109–133

    Google Scholar 

  • Hiyagon H (1989) Neon isotope measurement in the presence of Helium. Mass Spectrometry 37:325–330

    Google Scholar 

  • Ho SE, Groves D, McNaughton NJ, Mikucki EJ (1992) The source of ore fluids and solutes in Archaean lode-gold deposits of Western Australia. J Volcanol Geoth Res 50:173–196

    Google Scholar 

  • Holland G, Ballentine CJ (2006) Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441(7090):186–191

    Google Scholar 

  • Holser WT (1979) Trace elements and isotopes in evaporites. In: Burns RG (ed) Marine minerals: Mineralogical Society of America Short Course Notes, vol 6. pp 295–346

    Google Scholar 

  • Honda M, Kurita K, Hamano Y, Ozima M (1982) Experimental studies of He and Ar degassing during rock fracturing. Earth Planet Sci Lett 59(2):429–436

    Google Scholar 

  • Hu R-Z, Burnard PG, Bi X-W, Zhou M-F, Peng J-T, Su W-C, Zhao J-H (2009) Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi province, China: Evidence from He, Ar and C isotopes. Chem Geol 266(1–2):86–95

    Google Scholar 

  • Hu RZ, Burnard PG, Bi XW, Zhou MF, Pen JT, Su WC, Wu KX (2004) Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China. Chem Geol 203(3–4):305–317

    Google Scholar 

  • Hu RZ, Burnard PG, Turner G, Bi XW (1998) Helium and Argon isotope systematics in fluid inclusions of Machangqing copper deposit in west Yunnan province, China. Chem Geol 146(1–2):55–63

    Google Scholar 

  • Hünemohr H (1989) Edelgase in U- and Th-reichen mineralen und die Bestimmung der 21Ne-dicktarget-ausbeute der 18O(alpha, n)21Ne Kernreaktion in Bereich 4.0-8.8 MeV. In, vol Ph.D. Johannes-Gutenberg University, Mainz

    Google Scholar 

  • Irwin JJ, Reynolds JH (1995) Multiple stages of fluid trapping in the Stripa granite indicated by laser microprobe analysis of Cl, Br, I, K, U, and nucleogenic plus radiogenic Ar, Kr, and Xe in fluid inclusions. Geochim Cosmochim Acta 59(2):355–369

    Google Scholar 

  • Irwin JJ, Roedder E (1995) Diverse origins of fluid inclusions at Bingham (Utah, USA), Butte (Montana, USA), St. Austell (Cornwall, UK) and Ascension Island (mid-Atlantic, UK), indicated by laser microprobe analysis of Cl, K, Br, I, Ba + Te, U, Ar, Kr, and Xe. Geochim Cosmochim Acta 59(2):295–312

    Google Scholar 

  • Jambon A, Deruelle B, Dreibus G, Pineau F (1995) Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem Geol 126:101–117

    Google Scholar 

  • Jean-Baptiste P, Fouquet Y (1996) Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13°N. Geochim Cosmochim Acta 60(1):87–93

    Google Scholar 

  • Johnson L, Burgess R, Turner G, Milledge JH, Harris JW (2000) Noble gas and halogen geochemistry of mantle fluids: comparison of African and Canadian diamonds. Geochim Cosmochim Acta 64:717–732

    Google Scholar 

  • Kelley S (2002) Excess argon in K-Ar and Ar-Ar geochronology. Chem Geol 188(1–2):1–22

    Google Scholar 

  • Kelley S, Turner G, Butterfield AW, Shepherd TJ (1986) The source and significance of argon isotopes in fluid inclusions from areas of mineralization. Earth Plan Sci Lett 79:303–318

    Google Scholar 

  • Kendrick MA (2007) Comment on ‘Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: New insights from 40Ar/39Ar dating by stepwise crushing by Hua-Ning Qiu and JR Wijbrans’. Geochim Cosmochim Acta 71(24):6040–6045

    Google Scholar 

  • Kendrick MA (2012) High precision Cl, Br and I determination in mineral standards using the noble gas method. Chem Geol 292–293:116–126

    Google Scholar 

  • Kendrick MA, Baker T, Fu B, Phillips D, Williams PJ (2008a) Noble gas and halogen constraints on regionally extensive mid-crustal Na-Ca metasomatism, the Proterozoic Eastern Mount Isa Block, Australia. Precambr Res 163(1–2):131–150

    Google Scholar 

  • Kendrick MA, Burgess R, Harrison D, Bjørlykke A (2005) Noble gas and halogen evidence on the origin of Scandinavian sandstone-hosted Pb-Zn deposits. Geochim Cosmochim Acta 69:109–129

    Google Scholar 

  • Kendrick MA, Burgess R, Leach D, Pattrick RAD (2002a) Hydrothermal fluid origins in Mississippi valley-type ore deposits: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the Illinois-Kentucky Fluorspar district, Viburnum Trend, and Tri-State districts, mid-continent United States. Econ Geol 97(3):452–479

    Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RAD, Turner G (2001a) Fluid inclusion noble gas and halogen evidence on the origin of Cu-Porphyry mineralising fluids. Geochim Cosmochim Acta 65(16):2651–2668

    Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RAD, Turner G (2001b) Halogen and Ar-Ar age determinations of inclusions within quartz veins from porphyry copper deposits using complementary noble gas extraction techniques. Chem Geol 177(3–4):351–370

    Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RAD, Turner G (2002b) Hydrothermal fluid origins in a fluorite-rich Mississippi valley-type deposit: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the South Pennine Orefield, United Kingdom. Econ Geol 97(3):435–451

    Google Scholar 

  • Kendrick MA, Duncan R, Phillips D (2006a) Noble gas and halogen constraints on mineralizing fluids of metamorphic versus surficial origin: Mt Isa, Australia. Chem Geol 235(3–4):325–351

    Google Scholar 

  • Kendrick MA, Honda M, Gillen D, Baker T, Phillips D (2008b) New constraints on regional brecciation in the Wernecke Mountains, Canada, from He, Ne, Ar, Kr, Xe, Cl, Br and I in fluid inclusions. Chem Geol 255(1–2):33–46

    Google Scholar 

  • Kendrick MA, Honda M, Oliver NHS, Phillips D (2011a) The noble gas systematics of late-orogenic H2O-CO2 fluids, Mt Isa, Australia. Geochim Cosmochim Acta 75(6):1428–1450

    Google Scholar 

  • Kendrick MA, Honda M, Walshe J, Petersen K (2011b) Fluid sources and the role of abiogenic-CH4 in Archean gold mineralization: constraints from noble gases and halogens. Precambr Res 189:313–327

    Google Scholar 

  • Kendrick MA, Kamenetsky VS, Phillips D, Honda M (2012) Halogen (Cl, Br, I) systemtics of mid-ocean ridge basalts: a Macquarie Island case study. Geochim Cosmochim Acta 81:82–93

    Google Scholar 

  • Kendrick MA, Mark G, Phillips D (2007) Mid-crustal fluid mixing in a Proterozoic Fe oxide-Cu-Au deposit, Ernest Henry, Australia: Evidence from Ar, Kr, Xe, Cl, Br, and I. Earth Planet Sci Lett 256(3–4):328–343

    Google Scholar 

  • Kendrick MA, Miller JM, Phillips D (2006b) Part II: Evaluation of 40Ar-39Ar quartz ages: Implications for fluid inclusion retentivity and determination of initial 40Ar/36Ar values in Proterozoic samples. Geochim Cosmochim Acta 70:2562–2576

    Google Scholar 

  • Kendrick MA, Phillips D (2009) New constraints on the release of noble gases during in vacuo crushing and application to scapolite Br-Cl-I and 40Ar/39Ar age determinations. Geochim Cosmochim Acta 73(19):5673–5692

    Google Scholar 

  • Kendrick MA, Phillips D, Miller JM (2006c) Part I. Decrepitation and degassing behaviour of quartz up to 1560 °C: Analysis of noble gases and halogens in complex fluid inclusions assemblages. Geochim Cosmochim Acta 70:2540–2561

    Google Scholar 

  • Kendrick MA, Phillips D, Wallace M, Miller JM (2011c) Halogens and noble gases in sedimentary formation waters and Zn-Pb deposits: a case study from the Lennard Shelf, Australia. Appl Geochem 26:2089–2100

    Google Scholar 

  • Kendrick MA, Scambelluri M, Honda M, Phillips D (2011d) High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat Geosci 4:807–812

    Google Scholar 

  • Kennedy BM (1988) Noble gases in vent water from the Juan de Fuca Ridge. Geochim Cosmochim Acta 52(7):1929–1935

    Google Scholar 

  • Kennedy BM, Hiyagon H, Reynolds JH (1990) Neon: a striking crustal uniformity. Earth Planet Sci Lett 98:277–286

    Google Scholar 

  • Kennedy BM, Torgersen T, van Soest MC (2002) Multiple atmospheric noble gas components in hydrocarbon reservoirs: a study of the Northwest Shelf, Delaware Basin, SE New Mexico. Geochim Cosmochim Acta 66(16):2807–2822

    Google Scholar 

  • Kesler SE (2007) Geochemistry of fluid inclusion brines from Earth’s oldest Mississippi Valley-type (MVT) deposits, Transvaal Supergroup, South Africa. Chem Geol 237:274–288

    Google Scholar 

  • Kesler SE, Appold MS, Martini AM, Walter LM, Huston TJ, Kyle JR (1995) Na-Cl-Br systematics of mineralising brines in Mississippi Valley-type deposits. Geology 23:641–644

    Google Scholar 

  • Kharaka YK, Hanor JS (2003) Deep Fluids in the Continents: I. Sedimentary Basins. In: Treatise on Geochemistry, vol. Pergamon, Oxford, pp 1–48

    Google Scholar 

  • Kharaka YK, Specht DJ (1988) The solubility of noble gases in crude oil at 25–100 °C. Appl Geochem 3(2):137–144

    Google Scholar 

  • Kipfer R, Aeschbach-Hertig W, Peeters F, Stute M (2002) Noble Gases in Lakes and Ground Waters. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble Gases in Geochemistry and Cosmochemistry, vol 47. The Mineralogical Society of America, pp 615–700

    Google Scholar 

  • Kluge T, Marx T, Scholz D, Niggemann S, Mangini A, Aeschbach-Hertig W (2008) A new tool for palaeoclimate reconstruction: Noble gas temperatures from fluid inclusions in speleothems. Earth Planet Sci Lett 269(3–4):408–415

    Google Scholar 

  • Lang JR, Baker T (2001) Intrusion-related gold systems: the present level of understanding. Miner Deposita 36(6):477–489

    Google Scholar 

  • Langmuir CH, Vocke RD Jr, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37(3):380–392

    Google Scholar 

  • Large RR, Bull SW, Maslennikov VV (2011) A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits. Econ Geol 106(3):331–358

    Google Scholar 

  • Leach DL, Dwight B, Lewchuk MT, Symons DTA, de Marsily G, Brannon J (2001) Mississippi Valley-type lead-zinc deposits through geological time: implications from recent age-dating research. Miner Deposita 36(8):711–740

    Google Scholar 

  • Leach DL, Rowan EL (1986) Genetic link between Ouachita Foldbelt Tectonism and the Mississippi Valley-type lead-zinc deposits of the Ozarks. Geology 14(11):931–935

    Google Scholar 

  • Lee JY, Marti K, Severinghaus JP, Kawamura K, Yoo HS, Lee JB, Kim JS (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70(17):4507–4512

    Google Scholar 

  • Li XF, Wang CZ, Hua RM, Wei XL (2010) Fluid origin and structural enhancement during mineralization of the Jinshan orogenic gold deposit, South China. Miner Deposita 45(6):583–597

    Google Scholar 

  • Liebscher A, Luders V, Heinrich W, Schettler G (2006) Br/Cl signature of hydrothermal fluids: liquid-vapour fractionation of bromine revisited. Geofluids 6:113–121

    Google Scholar 

  • Lippmann-Pipke J, Sherwood Lollar B, Niedermann S, Stroncik NA, Naumann R, van Heerden E, Onstott TC (2011) Neon identifies two billion year old fluid component in Kaapvaal Craton. Chem Geol 283(3–4):287–296

    Google Scholar 

  • Lippmann J, Stute M, Torgersen T, Moser DP, Hall JA, Lin L, Borcsik M, Bellamy RES, Onstott TC (2003) Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochim Cosmochim Acta 67(23):4597–4619

    Google Scholar 

  • Lueders V, Niedermann S (2010) Helium isotope composition of fluid inclusions hosted in massive sulfides from modern submarine hydrothermal systems. Econ Geol 105(2):443–449

    Google Scholar 

  • Lupton JE, Baker ET, Massoth GJ (1989) Variable 3He/heat ratios in submarine hydrothermal systems: evidence from two plumes over the Juan de Fuca ridge. Nature 337(6203):161–164

    Google Scholar 

  • Lupton JE, Baker ET, Massoth GJ (1999) Helium, heat, and the generation of hydrothermal event plumes at mid-ocean ridges. Earth Planet Sci Lett 171(3):343–350

    Google Scholar 

  • MacCready T, Goleby BR, Goncharov A, Drummond BJ, Lister GS (1998) A framework of overprinting orogens based on interpretation of the Mt Isa deep siesmic transect. Econ Geol 93:1422–1434

    Google Scholar 

  • Mamyrin BA, Anufriyev GS, Kamenskiy IL, Tolstikhin (1970) Determination of the composition of atmospheric helium. Geochemistry International 7:498–505

    Google Scholar 

  • Mao JW, Li YQ, Goldfarb R, He Y, Zaw K (2003) Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: a mantle connection for mineralization? Econ Geol Bull Soc Econ Geol 98(3):517–534

    Google Scholar 

  • Mark G (2001) Nd isotope and petrogenetic constraints for the origin of the Mount Angelay igneous complex: implications for the origin of intrusions in the Cloncurry district, NE Australia. Precambr Res 105:17–35

    Google Scholar 

  • Mark G, Foster DRW, Pollard PJ, Williams PJ, Tolman J, Darvall M, Blake KL (2004) Stable isotope evidence for magmatic fluid input during large-scale Na-Ca alteration in the Cloncurry Fe oxide Cu-Au district, NW Queensland, Australia. Terra Nova 16:54–61

    Google Scholar 

  • Mark G, Oliver NHS, Carew MJ (2006) Insights into the genesis and diversity of epigenetic Cu-Au mineralisation in the Cloncurry district, Mt Isa Inlier, northwest Queensland. Aust J Earth Sci 53:109–124

    Google Scholar 

  • Markl G, Bucher K (1998) Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. Nature 391(6669):781–783

    Google Scholar 

  • Martin JB, Gieskes JM, Torres M, Kastner M (1993) Bromine and iodine in Peru margin sediments and pore fluids: Implications for fluid origins. Geochim Cosmochim Acta 57(18):4377–4389

    Google Scholar 

  • Matsuda J, Nagao K (1986) Noble-Gas abundances in a Deep-Sea sediment core from Eastern Equatorial Pacific. Geochem J 20(2):71–80

    Google Scholar 

  • Mavrogenes JA, Bodnar RJ (1994) Hydrogen movement into and out of fluid inclusions in quartz: experimental evidence and geologic implications. Geochim Cosmochim Acta 58(1):141–148

    Google Scholar 

  • McCaffrey MA, Lazar B, Holland HD (1986) The evaporation path of seawater and the composition of Br- and K+ with halite. J Sediment Petrol 57:928–937

    Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and Thermochronology by the 40Ar/39Ar method, vol Oxford. University Press, New York

    Google Scholar 

  • McLaren S, Sandiford M, Hand M (1999) High radiogenic heat-producing granites and metamorphism: an example from the western Mount Isa inlier, Australia. Geology 27(8):679–682

    Google Scholar 

  • Mernagh T, Bastrakov EN, Zaw K, Wygralak AS, Wyborn LAI (2007) Comparison of fluid inclusion data and mineralisation processes for Australian orogenic gold and intrusion related gold systems. Acta Petrol Sin 23:21–32

    Google Scholar 

  • Moreira M, Blusztajn J, Curtice J, Hart S, Dick H, Kurz MD (2003) He and Ne isotopes in oceanic crust: implications for noble gas recycling in the mantle. Earth Planet Sci Lett 216(4):635–643

    Google Scholar 

  • Morelli R, Creaser RA, Seltmann R, Stuart FM, Selby D, Graupner T (2007) Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite. Geology 35(9):795–798

    Google Scholar 

  • Muramatsu Y, Doi T, Tomaru H, Fehn U, Takeuchi R, Matsumoto R (2007) Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: Implications for the origin of gas hydrates. Appl Geochem 22(3):534–556

    Google Scholar 

  • Muramatsu Y, Fehn U, Yoshida S (2001) Recycling of iodine in fore-arc areas: evidence from the iodine brines in Chiba, Japan. Earth Planet Sci Lett 192(4):583–593

    Google Scholar 

  • Muramatsu Y, Wedepohl KH (1998) The distribution of iodine in the Earth’s crust. Chem Geol 147(3–4):201–216

    Google Scholar 

  • Nahnybida T, Gleeson SA, Rusk BG, Wassenaar LI (2009) Cl/Br ratios and stable chlorine isotope analysis of magmatic-hydrothermal fluid inclusions from Butte, Montana and Bingham Canyon, Utah. Miner Deposita 44(8):837–848

    Google Scholar 

  • Neumayr P, Walshe J, Hagemann S, Petersen K, Roache A, Frikken P, Horn L, Halley S (2008) Oxidized and reduced mineral assemblages in greenstone belt rocks of the St. Ives gold camp, Western Australia: vectors to high-grade ore bodies in Archaean gold deposits? Miner Deposita 43(3):363–371

    Google Scholar 

  • Nissenbaum A (1977) Minor and trace elements in Dead sea water. Chem Geol 19:99–111

    Google Scholar 

  • Niedermann S (2002) Cosmic-Ray-Produced noble gases in terrestrial rocks: dating tools for surface processes. In: Porcelli CJ, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, vol 47: Reviews in Mineralogy and Geochemistry: Washington DC, Mineralogical Society of America, p 731–777

    Google Scholar 

  • Nier AO (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Phys Rev 77:789–793

    Google Scholar 

  • O’Nions RK, Oxburgh ER (1988) Helium, volatile fluxes and the development of continental crust. Earth Planet Sci Lett 90:331–347

    Google Scholar 

  • Oliver NHS (1995) Hydrothermal history of the Mary Kathleen fold belt, Mt Isa Block, Queensland. Aust J Earth Sci 42:267–279

    Google Scholar 

  • Oliver NHS, Butera KM, Rubenach MJ, Marshall LJ, Cleverley JS, Mark G, Tullemans F, Esser D (2008) The protracted hydrothermal evolution of the Mount Isa Eastern succession: a review and tectonic implications. Precambr Res 163(1–2):108–130

    Google Scholar 

  • Oliver NHS, Cartwright I, Wall VJ, Golding SD (1993) The stable isotope signature of kilometre-scale fracture-dominated metamorphic fluid pathways, Mary Kathleen, Australia. J Metamorph Geol 11:705–720

    Google Scholar 

  • Oliver NHS, Cleverley JS, Mark G, Pollard PJ, Fu B, Marshall LJ, Rubenach MJ, Williams PJ, Baker T (2004) Modeling the role of sodic alteration in the genesis of iron-oxide-copper-gold deposits, eastern Mt Isa block. Aust Econ Geol 99:1145–1176

    Google Scholar 

  • Osawa T (2004) A new correction technique for mass interferneces by 40Ar++ and CO2++ during isotope analysis of a small amount of Ne. J Mass Spectrom Soc Jpn 52(4):230–232

    Google Scholar 

  • Oxburgh ER, O’Nions RK, Hill RI (1986) Helium isotopes in sedimentary basins. Nature 324(6098):632–635

    Google Scholar 

  • Ozima M, Podosek FA (2002) Noble Gas Geochemistry, vol. Cambridge University Press

    Google Scholar 

  • Page RW, Sun S-S (1998) Aspects of geochronology and crustal evolution in the Eastern Fold Belt, Mount Isa Inlier. Aust J Earth Sci 45:343–362

    Google Scholar 

  • Painter MGM, Golding SD, Hannan KW, Neudert MK (1999) Sedimentologic, petrographic, and sulfur isotope constraints on fine-grained pyrite formation at Mount Isa Mine and environs, Northwest Queensland. Aust Econ Geol 94(6):883–912

    Google Scholar 

  • Perkins C, Heinrich CA, Wyborn LAI (1999) 40Ar/39Ar geochronology of copper mineralisation and regional alteration, Mount Isa. Aust Econ Geol 94:23–36

    Google Scholar 

  • Perkins WG (1984) Mount Isa Silica Dolomite and Copper Orebodies: the result of a syntectonic hydrothermal alteration system. Econ Geol 79(4):601–637

    Google Scholar 

  • Pettke T, Diamond LW (1997) Oligocene gold quartz veins at Brusson, NW Alps: Sr isotopes trace the source of ore-bearing fluid to over a 10 km depth. Econ Geol Bull Soc Econ Geol 92(4):389–406

    Google Scholar 

  • Pettke T, Frei R (1996) Isotope systematics in vein gold from Brusson, Val d’Ayas (NW Italy).1. Pb/Pb evidence for a Piemonte metaophiolite Au source. Chem Geol 127(1–3):111–124

    Google Scholar 

  • Pettke T, Frei R, Kramers JD, Villa IM (1997) Isotope systematics in vein gold from Brusson, Val d’Ayas (NW Italy).2. (U + Th)/He and K/Ar in native Au and its fluid inclusions. Chem Geol 135(3–4):173–187

    Google Scholar 

  • Phillips D, Fu B, Wilson CJL, Kendrick MA, Fairmaid AM, Miller JM (2012) Timing of Gold Mineralisation in the Western Lachlan Orogen, SE Australia: A Critical Overview. Aust J Earth Sci (in press)

    Google Scholar 

  • Phillips D, Miller JM (2006) 40Ar/39Ar dating of mica-bearing pyrite from thermally overprinted Archaean gold deposits. Geology 34:397–400

    Google Scholar 

  • Phillips FM, Castro MC (2003) Groundwater dating and residence-time measurements. In: Treatise on Geochemistry, vol 5. Elsevier, pp 451–497

    Google Scholar 

  • Phillips GN, Powell R (1993) Link between gold provinces. Econ Geol Bull Soc Econ Geol 88(5):1084–1098

    Google Scholar 

  • Pili É, Kennedy BM, Conrad ME, Gratier JP (2011) Isotopic evidence for the infiltration of mantle and metamorphic CO2-H2O fluids from below in faulted rocks from the San Andreas Fault system. Chem Geol 281(3–4):242–252

    Google Scholar 

  • Pinti DL, Béland-Otis C, Tremblay A, Castro MC, Hall CM, Marcil J-S, Lavoie J-Y, Lapointe R (2011) Fossil brines preserved in the St-Lawrence Lowlands, Québec, Canada as revealed by their chemistry and noble gas isotopes. Geochim Cosmochim Acta 75(15):4228–4243

    Google Scholar 

  • Pinti DL, Marty B, Andrews JN (1997) Atmosphere-derived noble gas evidence for the preservation of ancient waters in sedimentary basins. Geology 25(2):111–114

    Google Scholar 

  • Pirajno F (2000) Ore deposits and mantle plumes. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pitre F, Pinti DL (2010) Noble gas enrichments in porewater of estuarine sediments and their effect on the estimation of net denitrification rates. Geochim Cosmochim Acta 74(2):531–539

    Google Scholar 

  • Plumlee GS, Goldhaber MB, Rowan EL (1995) Potential role of magmatic gases in the genesis of illinois-kentucky fluorspar deposits: implications from chemical reaction path modelling. Econ Geol Bull Soc Econ Geol 90(5):999–1011

    Google Scholar 

  • Podosek FA, Bernatowicz TJ, Kramer FE (1981) Adsorption of xenon and krypton on shales. Geochim Cosmochim Acta 45:2401–2415

    Google Scholar 

  • Podosek FA, Honda M, Ozima M (1980) Sedimentary noble gases. Geochim Cosmochim Acta 44:1875–1884

    Google Scholar 

  • Polito PA, Bone Y, Clarke JDA, Mernagh TP (2001) Compositional zoning of fluid inclusions in the Archaean Junction gold deposit, Western Australia: a process of fluid wall-rock interaction? Aust J Earth Sci 48(6):833–855

    Google Scholar 

  • Pollard PJ (2000) Evidence of a magmatic fluid and metal source for Fe-oxide Cu-Au mineralisation. In: Porter TM (ed) Hydrothermal iron oxide copper gold and related deposits: a global perspective, vol. PGC Publishing, Adelaide, pp 27–41

    Google Scholar 

  • Pollard PJ (2001) Sodic-(calcic) alteration in Fe-oxide-Cu-Au districts: and origin via unmixing of magmatic H2O-CO2-NaCl ± CaCl2-KCl fluids. Miner Deposita 36:93–100

    Google Scholar 

  • Polya DA, Foxford KA, Stuart F, Boyce A, Fallick AE (2000) Evolution and paragenetic context of low δD hydrothermal fluids from the Panasqueira W-Sn deposit, Portugal: new evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions. Geochim Cosmochim Acta 64(19):3357–3371

    Google Scholar 

  • Powell R, Will TM, Phillips GN (1991) Metamorphism in archean greenstone belts: calculated fluid compositions and implications for gold mineralization. J Metamorph Geol 9(2):141–150

    Google Scholar 

  • Pujol M, Marty B, Burnard P, Philippot P (2009) Xenon in archean barite: weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochim Cosmochim Acta 73(22):6834–6846

    Google Scholar 

  • Raquin A, Moreira MA, Guillon F (2008) He, Ne and Ar systematics in single vesicles: mantle isotopic ratios and origin of the air component in basaltic glasses. Earth Planet Sci Lett 274(1–2):142–150

    Google Scholar 

  • Reddy SM, Kelley SP, Magennis L (1997) A microstructural and argon laserprobe study of shear zone development at the western margin of the Nanga Parbat-Haramosh Massif, western Himalaya. Contrib Miner Petrol 128(1):16–29

    Google Scholar 

  • Robb LJ (2005) Introduction to Ore-Forming Processes, vol. Blackwell Publishing, p 373

    Google Scholar 

  • Rock NMS, Groves DI (1988) Do lamprophyres carry gold as well as diamonds? Nature 332(6161):253–255

    Google Scholar 

  • Roedder E (1971a) Fluid-inclusion evidence on the environment of formation of mineral deposits of the Southern Appalachian Valley. Econ Geol 66:777–791

    Google Scholar 

  • Roedder E (1971b) Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax. Colorado Econ Geol 66(1):98–118

    Google Scholar 

  • Roedder E (1984) Fluid Inclusions, vol 12. Mineralogical society of America. Bookcrafters, Inc., Chelsea, p 646

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the Continental Crust. In: Treatise of Geochemistry, vol 3. Elsevier Ltd., pp 1–64

    Google Scholar 

  • Rusk BG, Reed MH, Dilles JH, Klemm LM, Heinrich CA (2004) Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte. MT Chem Geol 210(1–4):173–199

    Google Scholar 

  • Russell MJ, Smith FW (1979) Plate separation, alkali magmatism and fluorite mineralisation in Northern and Central England. Transac Inst Min Metall Sect B-Appl Earth Sci 88(FEB):B30

    Google Scholar 

  • Sanchez V, Stuart FM, Martin-Crespo T, Vindel E, Corbella M, Cardellach E (2010) Helium isotopic ratios in fluid inclusions from fluorite-rich Mississippi Valley-Type district of Asturias, northern Spain. Geochem J 44(6):E1–E4

    Google Scholar 

  • Sandiford M, McLaren S, Neumann N (2002) Long-term thermal consequences of the redistribution of heat-producing elements associated with large-scale granitic complexes. J Metamorph Geol 20(1):87–98

    Google Scholar 

  • Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, Gòmez-Pugnaire MT, Lòpez-Sànchez Vizcaino V (2001) Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet Sci Lett 192(3):457–470

    Google Scholar 

  • Scambelluri M, Piccardo GB, Philippot P, Robbiano A, Negretti L (1997) High salinity fluid inclusions fromed from recycled seawater in deeply subducted alpine serpentinite. Earth Planet Sci Lett 148:485–499

    Google Scholar 

  • Scheidegger Y, Baur H, Brennwald MS, Fleitmann D, Wieler R, Kipfer R (2010) Accurate analysis of noble gas concentrations in small water samples and its application to fluid inclusions in stalagmites. Chem Geol 272(1–4):31–39

    Google Scholar 

  • Scheidegger Y, Brennwald MS, Fleitmann D, Jeannin PY, Wieler R, Kipfer R (2011) Determination of Holocene cave temperatures from Kr and Xe concentrations in stalagmite fluid inclusions. Chem Geol 288(1–2):61–66

    Google Scholar 

  • Schilling JC, Unni CK, Bender ML (1978) Origin of chlorine and bromine in the oceans. Nature 273:631–636

    Google Scholar 

  • Schwarz WH, Trieloff M, Altherr R (2005) Subduction of solar-type noble gases from extraterrestrial dust: constraints from high-pressure low-temperature metamorphic deep-sea sediments. Contrib Miner Petrol 149(6):675–684

    Google Scholar 

  • Shelton KL, Taylor RP, So CS (1987) Stable isotope studies of the Dae Hwa tungsten-molybdenum mine, Republic or Korea: evidence of progressive meteoric water interaction in a tungsten-bearing hydrothermal system. Econ Geol 82(2):471–481

    Google Scholar 

  • Sherlock S, Kelley S (2002) Excess argon evolution in HP-LT rocks: a UVLAMP study of phengite and K-free minerals, NW Turkey. Chem Geol 182(2–4):619–636

    Google Scholar 

  • Siemann MG (2003) Extensive and rapid changes in seawater chemistry during the Phanerozoic: evidence from Br contents in basal halite. Terra Nova 15(4):243–248

    Google Scholar 

  • Siemann MG, Schramm M (2000) Thermodynamic modelling of the Br partition between aqueous solutions and halite. Geochim Cosmochim Acta 64(10):1681–1693

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105(1):3–41

    Google Scholar 

  • Simmons SF, Sawkins FJ, Schlutter DJ (1987) Mantle derived helium in two Peruvian hydrothermal ore deposits. Nature 329:429–432

    Google Scholar 

  • Smith SP, Kennedy BM (1983) The solubility of noble gases in water and in NaCl brine. Geochim Cosmochim Acta 47:503–515

    Google Scholar 

  • So CS, Shelton KL, Seidemann DE, Skinner BJ (1983) The Dae Hwa tungsten-molybdenum mine, Republic of Korea: a geochemical study. Econ Geol 78(5):920–930

    Google Scholar 

  • Staudacher T, Allègre CJ (1988) Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet Sci Lett 89(2):173–183

    Google Scholar 

  • Stuart FM, Burnard PG, Taylor RP, Turner G (1995) Resolving mantle and crustal contributions to ancient hydrothermal fluids: He–Ar isotopes in fluid inclusions from Dae Hwa W–Mo mineralisation, South Korea. Geochim Cosmochim Acta 59(22):4663–4673

    Google Scholar 

  • Stuart FM, Turner G (1992) The abundance and isotopic composition of the noble gases in ancient fluids. Chem Geol 101:97–109

    Google Scholar 

  • Stuart FM, Turner G (1998) Mantle-derived 40Ar in mid-ocean ridge hydrothermal fluids: implications for the source of volatiles and mantle degassing rates. Chem Geol 147(1–2):77–88

    Google Scholar 

  • Stuart FM, Turner G, Duckworth RC, Fallick AE (1994) Helium-isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulphides. Geology 22(9):823–826

    Google Scholar 

  • Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ (2010) Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. Earth Planet Sci Lett 294(1–2):163–172

    Google Scholar 

  • Sun XM, Zhang Y, Xiong DX, Sun WD, Shi GY, Zhai W, Wang SW (2009) Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China. Ore Geol Rev 36(1–3):235–249

    Google Scholar 

  • Svensen H, Banks DA, Austreim H (2001) Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, western Norway. J Metamorph Geol 19:165–178

    Google Scholar 

  • Sverjensky DA (1986) Genesis of Missisippi Valley-type lead-zinc deposits. Annu Rev Earth Planet Sci 14:177–199

    Google Scholar 

  • Swager CP (1985) Syndeformational Carbonate-replacement model for the copper mineralization at Mount Isa, Northwest Queensland: a microstructural study. Econ Geol 80:107–125

    Google Scholar 

  • Taylor HP (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 229–302

    Google Scholar 

  • Thomas HV, Large RE, Bull SW, Maslennikov V, Berry RF, Fraser R, Froud S, Moye R (2011) Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at bendigo gold mine, Australia: insights for ore genesis. Econ Geol 106(1):1–31

    Google Scholar 

  • Tolstikhin I, Kamensky I, Tarakanov S, Kramers J, Pekala M, Skiba V, Gannibal M, Novikov D (2010) Noble gas isotope sites and mobility in mafic rocks and olivine. Geochim Cosmochim Acta 74(4):1436–1447

    Google Scholar 

  • Tomaru H, Fehn U, Lu ZL, Matsumoto R (2007a) Halogen systematics in the Mallik 5L–38 gas hydrate production research well, Northwest Territories, Canada: Implications for the origin of gas hydrates under terrestrial permafrost conditions. Appl Geochem 22(3):656–675

    Google Scholar 

  • Tomaru H, Fehn U, Lu ZL, Takeuchi R, Inagaki F, Imachi H, Kotani R, Matsumoto R, Aoike K (2009) Dating of dissolved iodine in pore waters from the gas hydrate occurrence offshore Shimokita Peninsula, Japan: 129I Results from the D/V Chikyu Shakedown Cruise. Resour Geol 59(4):359–373

    Google Scholar 

  • Tomaru H, Lu Z, Snyder GT, Fehn U, Hiruta A, Matsumoto R (2007b) Origin and age of pore waters in an actively venting gas hydrate field near Sado Island, Japan Sea: Interpretation of halogen and 129I distributions. Chem Geol 236(3–4):350–366

    Google Scholar 

  • Torgersen T (2010) Continental degassing flux of 4He and its variability. Geochem Geophys Geosyst 11

    Google Scholar 

  • Torgersen T, Kennedy BM, van Soest MC (2004) Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks. Earth Planet Sci Lett 226(3–4):477–489

    Google Scholar 

  • Torgersen T, O’Donnell J (1991) The degassing flux from the solid earth: release by fracturing. Geophys Res Lett 18(5):951–954

    Google Scholar 

  • Turner G (1988) Hydrothermal fluids and argon isotopes in quartz veins and cherts. Geochim Cosmochim Acta 52:1443–1448

    Google Scholar 

  • Turner G, Bannon MP (1992) Argon isotope geochemistry of inclusion fluids from granite-associated mineral veins in Southwest and Northwest England. Geochim Cosmochim Acta 56(1):227–243

    Google Scholar 

  • Turner G, Burnard P, Ford JL, Gilmour JD, Lyon IC, Stuart FM (1993) Tracing fluid sources and interactions. Philisophical transactions of the Royal Society London A 344:127–140

    Google Scholar 

  • Turner G, Stuart F (1992) Helium heat ratios and deposition temperatures of sulfides from the ocean-floor. Nature 357(6379):581–583

    Google Scholar 

  • Viets JG, Hofstra AH, Emsbo P (1996) Solute composition of fluid inclusions in sphalerite from North American and European Mississippi Valley-Type ore deposits: ore fluids derived from evaporated seawater. Soc Econ Geol Spec Publ 4:465–482

    Google Scholar 

  • Viets JG, Leach DL (1990) Genetic implications of regional and temporal trends in ore fluid geochemistry of Mississippi valley: type deposits in the Ozark region. Econ Geol 85:842–861

    Google Scholar 

  • Valkiers S, Vendelbo D, Berglund M, de Podesta M (2010) Preparation of argon primary measurement standards for the calibration of ion current ratios measured in argon. Int J Mass Spectrom 291(1–2):41–47

    Google Scholar 

  • Wallace MW, Middleton HA, Johns B, Marshallsea S (2002) Hydrocarbons and Mississippi Valley-type sulfides in the devonian reef complexes of the eastern Lennard Shelf, Canning Basin, Western Australia. In: Keep M, Moss SJ (eds) The Sedimentary Basins of Western Australia 3: Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, WA., vol., Perth, WA, pp 795–816

    Google Scholar 

  • Warren C, Sherlock S, Kelley S (2011) Interpreting high-pressure phengite 40Ar/39Ar laserprobe ages: an example from Saih Hatat, NE Oman. Contrib Miner Petrol 161(6):991–1009

    Google Scholar 

  • Webber AP, Roberts S, Burgess R, Boyce AJ (2011) Fluid mixing and thermal regimes beneath the PACMANUS hydrothermal field, Papua New Guinea: Helium and oxygen isotope data. Earth Planet Sci Lett 304(1–2):93–102

    Google Scholar 

  • Wei HX, Sun XM, Zhai W, Shi GY, Liang YH, Mo RW, Han MX, Yi JZ (2010) He-Ar-S isotopic compositions of ore-forming fluids in the Bangbu large-scale gold deposit in southern Tibet, China. Acta Petrol Sin 26(6):1685–1691

    Google Scholar 

  • Wilde AR (2011) Mount Isa copper orebodies: improving predictive discovery. Aust J Earth Sci 58(8):937–951

    Google Scholar 

  • Wilkinson JJ, Stoffell B, Wilkinson CC, Jeffries TE, Appold MS (2009) Anomalously metal-rich fluids form hydrothermal ore deposits. Science 323(5915):764–767

    Google Scholar 

  • Winckler G, Kipfer R, Aescbach-Hertig W, Botz R, Schmidt M, Schuler S, Bayer R (2000) Sub sea floor boiling of Red Sea Brines: new indication from noble gas data. Geochim Cosmochim Acta 64(9):1567–1575

    Google Scholar 

  • Yardley BWD (2005) 100th anniversary special paper: metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100(4):613–632

    Google Scholar 

  • Yardley BWD, Banks D, Bottrell SH, Diamond LW (1993) Post-metamorphic gold-quartz veins from N.W. Italy: the composition and origin of the ore fluid. Mineral Mag 57:407–422

    Google Scholar 

  • Yokochi R, Marty B, Pik R, Burnard P (2005) High 3He/4He ratios in peridotite xenoliths from SW Japan revisited: Evidence for cosmogenic 3He released by vacuum crushing. Geochem Geophys Geosyst 6:12

    Google Scholar 

  • Zaikowski A, Kosanke BJ, Hubbard N (1987) Noble gas composition of deep brines from the Palo Duro Basin, Texas. Geochim Cosmochim Acta 51:73–84

    Google Scholar 

  • Zeng Z, Qin Y, Zhai S (2001) He, Ne and Ar isotope compositions of fluid inclusions in hydrothermal sulfides from the TAG hydrothermal field Mid-Atlantic Ridge. Sci China Ser D Earth Sci 44(3):221–228

    Google Scholar 

  • Zherebtsova IK, Volkova NN (1966) Experimental study of behaviour of trace elements in the process of natural solar evaporation of Black Sea water and Lake Sasky-Sivash brine. Geochem Int 3:656–670

    Google Scholar 

  • Zhou S, Ye X (2002) Noble gas isotopic compositions of deep carbonate rocks from the Tarim Basin. Chin Sci Bull 47(9):774–778

    Google Scholar 

  • Ziegler JF (1980) Hanfbook of stopping cross-sections for energentic ions in all elements. Pergamon Press, New York

    Google Scholar 

  • Zuber A, Weise SM, Osenbruck K, Matenko T (1997) Origin and age of saline waters in Busko Spa (Southern Poland) determined by isotope, noble gas and hydrochemical methods: evidence of interglacial and pre-quaternary warm climate recharges. Appl Geochem 12(5):643–660

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Kendrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kendrick, M.A., Burnard, P. (2013). Noble Gases and Halogens in Fluid Inclusions: A Journey Through the Earth’s Crust. In: Burnard, P. (eds) The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28836-4_11

Download citation

Publish with us

Policies and ethics