Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 163))

Abstract

This chapter reviews the fundamental material properties of shape memory alloys and thereby sets up the physical situation our modelling is referring to. Laboratory observations reveal scale-specific characteristics the modelling must reflect. Therefore, shape memory alloys are a prime example of cross-scale modelling. We briefly explain the respective modelling approaches to place the method of molecular dynamics simulations into the scope of the scientific frame work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The diagram also nicely reveals an inflationary increase in publications in the internet age.

  2. 2.

    Note in 1915, Born was able to prove the Cauchy relations do not apply in the case of nested, many-species lattices owing to the contributions from interactions between the sublattices [50].

  3. 3.

    Proof following I. Müller in three steps:

    1. 1.

      Suppose \({\mathbf{ d} }\Vert \tilde{{\mathbf{ d} }}\), that is \(\tilde{{\mathbf{ d} }}=\alpha \,{\mathbf{ d} }\), where \(\alpha \) is a real scalar. Hence \({\mathbf{ F} }-\tilde{{\mathbf{ F} }}={\mathbf{ d} }\otimes ({\mathbf{ p} }-\alpha \tilde{{\mathbf{ p} }})\) and we conclude that the condition (1.3) holds for \({\mathbf{ a} }={\mathbf{ d} }\) and \({\mathbf{ m} }={\mathbf{ p} }-\alpha \tilde{{\mathbf{ p} }}\).

    2. 2.

      Suppose \({\mathbf{ p} }\Vert \tilde{{\mathbf{ p} }}\), that is \(\tilde{{\mathbf{ p} }}=\beta \,{\mathbf{ p} }\), where \(\beta \) is a real scalar. Hence \({\mathbf{ F} }-\tilde{{\mathbf{ F} }}=({\mathbf{ d} }-\beta \tilde{{\mathbf{ d} }})\otimes {\mathbf{ p} }\) and we conclude that the condition (1.3) holds for \({\mathbf{ a} }={\mathbf{ d} }-\beta \tilde{{\mathbf{ d} }}\) and \({\mathbf{ m} }={\mathbf{ p} }\)

    3. 3.

      Now suppose that the two vectors \({\mathbf{ p} }\) and \(\tilde{{\mathbf{ p} }}\) are not parallel, \(\mathbf{p}\nparallel \tilde{\mathbf{p}}\). Thus the normal vector \({\mathbf{ m} }\) may be represented as a linear combination of \({\mathbf{ p} }\) and \(\tilde{{\mathbf{ p} }}\), \({\mathbf{ m} }=\alpha \,{\mathbf{ p} }+\beta \,\tilde{\mathbf{ p} }\), where \(\alpha ,\beta \) are real scalars. It follows from (1.3) that \({\mathbf{ d} }\otimes {\mathbf{ p} }-\tilde{{\mathbf{ d} }}\otimes \tilde{{\mathbf{ p} }} ={\mathbf{ a} }\otimes (\alpha \,{\mathbf{ p} }+\beta \,\tilde{{\mathbf{ p} }})\), or, after re-arranging \(({\mathbf{ d} }-\alpha \,{\mathbf{ a} })\otimes {\mathbf{ p} }=(\tilde{{\mathbf{ d} }}-\beta \,{\mathbf{ a} })\otimes \tilde{{\mathbf{ p} }}\). This condition implies the vectors \({\mathbf{ d} }\) and \(\tilde{{\mathbf{ d} }}\) must be parallel in this case, since \({\mathbf{ d} }=\alpha \,{\mathbf{ a} }\) and \(\tilde{{\mathbf{ d} }}=\beta \,{\mathbf{ a} }\) are the only choices which meet the condition (1.3). With this result, we may now return to 1, which concludes the proof of the statement (1.4).

  4. 4.

    In thermodynamics, a process is called reversible if the entropy production is zero. In this case the entropy balance (1.8) turns into an equality. In nature no such processes exists, therefore the idea of reversibility must be regarded as an idealisation.

References

  1. L.C. Chang, T.A. Read, Plastic deformation and diffusionless phase changes in metals – the gold-cadmium beta phase. Trans. AIME 189(1), 47–52 (1951)

    Google Scholar 

  2. W.J. Buehler, R.C. Wiley, J.W. Gilfrich, Effect of low-temperature phase changes on mechanical properties of alloys near composition TiNi. J. Appl. Phys. 34(5), 1475 (1963)

    Article  ADS  Google Scholar 

  3. R.J. Wasilews, S.R. Butler, J.E. Hanlon, Martensitic transformation in TiNi. J. Metals 17(9), 1965 (1059)

    Google Scholar 

  4. M.W. Burkart, T.A. Read, Diffusionless phase change in the indium-thallium system. Trans. AIME 197(11), 1516–1524 (1953)

    Google Scholar 

  5. E. Hornbogen, G. Wassermann, Über den Einflus̈ von Spannungen und das Auftreten von Umwandlungsplastizität bei der \(\beta _1-\beta ^{\prime \prime }\)-Umwandlung des Messing. Z. Metallkd. 47(6), 427–433 (1956)

    Google Scholar 

  6. E. Hornbogen, A. Segmüller, G. Wassermann, Martensitische Umwandlung bei der Verformung von abgeschrecktem beta-1-Messing. Z. Metallkd. 48(7), 379–384 (1957)

    Google Scholar 

  7. H. Pops, T.B. Massalski, Thermoelastic + burst-type martensites in copper-zinc beta-phase alloys. Trans. AIME 230(7), 1662 (1964)

    Google Scholar 

  8. C.W. Chen, Some characteristic quantities of the martensite transformation of Cu-Al-Ni alloys. Trans. AIME 209, 1202–1203 (1957)

    Google Scholar 

  9. A. Musolff, Load-strain-temperature measurments of a NiTi wire. Department of Thermodynamics, Technical University of Berlin. Personally communicated (2003)

    Google Scholar 

  10. M. Wagner, J. Frenzel, Cyclic experiments with a NiTi wire. Department of Materials Science, Ruhr-University Bochum. Personally communicated (2008)

    Google Scholar 

  11. E. Hornbogen, Thermo-mechanical fatigue of shape memory alloys. J. Mater. Sci. 38, 1–15 (2003)

    Google Scholar 

  12. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 378, 24–33 (2004)

    Article  Google Scholar 

  13. E. Hornbogen, Shape memory alloys, in Advanced Structural and Functional Materials, ed. by G.J. Bunk (Springer, Heidelberg, 1991), pp. 133–163

    Chapter  Google Scholar 

  14. E. Hornbogen, G. Eggeler, Surface aspects and fatigue of shape memory alloys (SMAs). Mat.-wiss. u. Werkstofftech. 34, 255–259 (2004)

    Google Scholar 

  15. K. Otsuka, C.M. Wayman, (eds.) Shape Memory Materials (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  16. J.W. Christian, The theory of transformations in metals and alloys, volume I, II (Pergamon, Amsterdam, 2002)

    Google Scholar 

  17. K. Otsuka, C.M. Wayman, K. Nakai, Superelasticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys. Acta Metall. 24(3), 207–226 (1976)

    Article  Google Scholar 

  18. K. Bhattacharya, Microstructure of Martensite–Why it Forms and How it Gives Rise to the Shape-Memory Effect. (Oxford University Press, Oxford, 2003)

    Google Scholar 

  19. J. Philibert, Cinetique de la transformation martensitique dans und ferronickel. Comptes rendus hebdomaires des seances de l Academie des Sciences 240(5), 529–531 (1955)

    Google Scholar 

  20. R.C. O’Handley, Model for strain and magnetization in magnetic shape-memory alloys. Journal Appl. Phys. 83(6), 3263–3270 (1998)

    Article  ADS  Google Scholar 

  21. A.N. Vasil’ev, A.D. Bozhko, V.V. Khovailo, I.E. Dikshtein, V.G. Shavrov, V.D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi, J. Tani, Structural and magnetic phase transitions in shape-memory alloys Ni2+xMn1-xGa. Phys. Rev. B 59(2), 1113–1120 (1999)

    Article  ADS  Google Scholar 

  22. K. Oikawa, L. Wulff, T. Iijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida, Promising ferromagnetic Ni-Co-Al shape memory alloy system. Appl. Phys. Lett. 79(20), 3290–3292 (2001)

    Article  ADS  Google Scholar 

  23. P.W. Anderson, E.I. Blount, Symmetry considerations on martensitic transformations - ferroelectric metals. Phys. Rev. Lett. 14(7), 217 (1965)

    Article  ADS  MATH  Google Scholar 

  24. K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mat. Sci. 50(5), 511–678 (2005)

    Article  Google Scholar 

  25. T.H. Nam, T. Saburi, K. Shimizu, Cu-content dependence of shape memory characteristics in Ti-Ni-Cu alloys. Mat. Trans. JIM 31(11), 959–967 (1990)

    Google Scholar 

  26. J.D. Busch, A.D. Johnson, C.H. Lee, D.A. Stevenson, Shape-memory properties in Ni-Ti sputter-deposited film. J. Appl. Physics 68(12), 6224–6228 (1990)

    Article  ADS  Google Scholar 

  27. O. Matsumoto, S. Miyazaki, K. Otsuka, H. Tamura, Crystallography of martensitic-transformation in Ti-Ni single-crystals. Acta Metall. 35(8), 2137–2144 (1987)

    Article  Google Scholar 

  28. S. Miyazaki, K. Otsuka, C.M. Wayman, The shape memory mechanism associated with the martensitic-transformation in Ti-Ni alloys. 1. self-accommodation. Acta Metall. 37(7), 1873–1884 (1989)

    Article  Google Scholar 

  29. K. Otsuka, C.M. Wayman, K. Nakai, H. Sakamoto, K. Shimizu, Superelasticity effects and stress-induced martensitic transformations in cu-al-ni alloys. Acta Metall. 24(3), 207–226 (1976)

    Article  Google Scholar 

  30. K. Otsuka, H. Sakamoto, K. Shimizu, Successive stress-induced martensitic transformations and associated transformation pseudoelasticity in Cu-AL-Ni alloys. Acta Metall. 27(4), 585–601 (1979)

    Article  Google Scholar 

  31. K.E. Easterli, H.M. Miekkoja, Martensitic transformation of iron precipitates in a copper matrix. Acta Metall. 15(7), 1133 (1967)

    Article  Google Scholar 

  32. J. Perkins, R.O. Sponholz, Stress-induced martensitic-transformation cycling and 2-way shape memory training in Cu-ZNnAl alloys. Metall. Trans. A Phys. Metall. Mat. Sci. 15(2), 313–321 (1984)

    Google Scholar 

  33. K. Otsuka, K. Shimizu, Memory effect and thermoelastic martensite transformation in Cu-Al-Ni alloy. Scripta Metall. 4(6), 469 (1970)

    Google Scholar 

  34. Z.-Z. Yu, P.C. Clapp, Growth dynamics study of the martensitic transformation in Fe-30 pct Ni alloys: Part II. computer simulation of martensitic growth. Metall. Trans. A 20A, 1617–1629 (1989)

    ADS  Google Scholar 

  35. K.Y. Lee, J.R. Ray, Mechanism of pressure-induced martensitic phase-transformations - a molecular-dynamics study. Phys. Rev. B 39(1), 565–574 (1989)

    Article  ADS  Google Scholar 

  36. P.C. Clapp, J. Rifkin, Nucleation of a martensite in a computer. in Proceedings of International Conference on Solid-Solid Phase Transformations, (TMS-AIME, Warrendale, 1982), pp. 1165–1169

    Google Scholar 

  37. R. Meyer, P. Entel, Martensite-austenite transition and phonon dispersion curves of Fe\(_{1-x}\)Ni\(_x\) studied by molecular-dynamic simulations. Phys. Rev. B 57(9), 5140–5147 (1998)

    Article  ADS  Google Scholar 

  38. S. Rubini, P. Ballone, Quasi-harmonic and molecular-dynamics study of the martensitic-transformation in Ni-Al alloys. Phys. Rev. B 48(1), 99–111 (1993)

    Article  ADS  Google Scholar 

  39. W.W. Liang, M. Zhou, Atomistic simulations reveal shape memory of fcc metal nanowires. Phys. Rev. B 73(11) (2006)

    Google Scholar 

  40. U. Pinsook, G.J. Ackland, Atomistic simulation of shear in a martensitic twinned microstructure. Phys. Rev. B 62(9), 5427–5434 (2000)

    Google Scholar 

  41. Institute for Scientific Information. Web of science. Internet database, http://portal.isiknowledge.com

  42. P.C. Clapp, How would we recognise a martensitic transformation if it bumped into us on a dark & austy night? in Proceedings of the International Conference On Martensitic Transformations, ed. by R. Gotthard, J. Van Humbeeck, vol I of Les Editions de Physique, (Lausanne, Switzerland, 1995), pp. C8–11–C8–19

    Google Scholar 

  43. G.B. Olson, W.S. Owen, Martensite (The Materials Information Society, ASM international, 1992)

    Google Scholar 

  44. S. Tan, H. Xu, Observations on a CuAlNi single crystall. Continuum Mech. Therm. 2, 241–244 (1990)

    Article  ADS  Google Scholar 

  45. A. Schäfer, O. Kastner, DSI observation of temperature-induced martensitic transforamtions in a CuNiAl single crytal plate. (Department of Material Science, Ruhr-University Bochum, Germany, 2010)

    Google Scholar 

  46. Ch. Somsen, TEM observations in NiTi and NiTiFe. Department of Materials Science, Ruhr-University Bochum. Personally communicated (2010)

    Google Scholar 

  47. T. Waitz, The self accomodated morphology of martensite in nanocrystalline NiTi shape memory alloys. Acta Mater. 53(8), 2273–2283 (2005)

    Article  Google Scholar 

  48. P. Boullay, D. Schryvers, J.M. Ball, Nano-structures at martensite macrotwin interfaces in Ni65Al35. Acta Mater. 51(5), 1421–1436 (2003)

    Article  Google Scholar 

  49. A.-L. Cauchy, Sur l’Equilibre et le Mouvement d’un Systeme de Points Materiels. in Oevres Completes d’Augustin Cauchy, number 8 in 2, (1890), pp. 227–252

    Google Scholar 

  50. M. Born, Dynamik der Kristallgitter. (Teubner, 1915)

    Google Scholar 

  51. I. Müller, A History of Thermodynamics. (Springer, Berlin, 2007)

    Google Scholar 

  52. M.S. Wechsler, D.S. Lieberman, T.A. Read, On the theory of the formation of martensite. Trans. AIME 197(11), 1503–1515 (1953)

    Google Scholar 

  53. J.S. Bowles, J.K. Mackenzie, The crystallography of martensite transformations i. Acta Metall. 2, 129–137 (1954)

    Article  Google Scholar 

  54. J.S. Bowles, J.K. Mackenzie, The crystallography of martensite transformations ii. Acta Metall. 2, 138–147 (1954)

    Article  Google Scholar 

  55. C.M. Wayman, Introduction to the Crystallography of Martensitic Transformations (The MacMillan Company, New York, 1964)

    Google Scholar 

  56. H. Schumann, Kristallgeometrie (Einführung in die Theorie der Gittertransformationen metallischer Werkstoffe. VEB Deutscher Verlag für Grundstoffforschung, Leipzig, 1979)

    Google Scholar 

  57. J.M. Ball, R.D. James, Fine phase mixtures as minimizers of energy. Archive for Rational Mechanics And Analysis 100(1), 13–52 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J. Stat. Phys. 20(2), 200–244 (1979) Translation of the original work from 1893

    Google Scholar 

  59. J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system, I. interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  ADS  Google Scholar 

  60. J. Carr, M.E. Gurtin, M. Slemrod, Structured phase transition on a finite interval. Arch. Rat. Mech. Anal. 86, 317–351 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  61. L. Modica, Gradient theory of phase transitions and minimal interface criteria. Arch. Rat. Mech. Anal. 98(2), 132–142 (1987)

    Article  MathSciNet  Google Scholar 

  62. I. Fonseca, The gradient theory of phase transitions for systems with two potential wells. Proc. R. Soc. Edinb. 111A, 89–102 (1989)

    Article  MathSciNet  Google Scholar 

  63. L. Truskinovsky, G. Zanzotto, Finite-scale microstructures and metastability in one-dimensional elasticity. Meccanica 30, 577–589 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  64. Y. Huo, I. Müller, Interfacial and inhomogeneity penalties in phase transitions. Continuum Mech. Therm. 15, 395–407 (2003)

    Article  ADS  MATH  Google Scholar 

  65. A.G. Khachaturyan, Theory of Structural Transformations in Solids. (John Wiley & Sons, New York, 1983)

    Google Scholar 

  66. Y. Wang, A.G. Khachaturyan, Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater. 45(2), 759–773 (1997)

    Article  Google Scholar 

  67. R. Abeyaratne, J.K. Knowles, Kinetic relations and the propagation of phase boundaries in solids. Arch. Rat. Mech. Anal. 114, 119–154 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  68. R. Abeyaratne, J.K. Knowles, Dynamics of propagating phase boundaries: Thermoelastic solids with heat conduction. Arch. Rat. Mech. Anal. 126, 203–230 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  69. L.M. Truskinovsky, Dynamics of non-equlibrium phase boundaries in a heat conducting non-linearly elastic medium. J. Appl. Math. Mech. (PMM) 53, 777–784 (1987)

    Article  MathSciNet  Google Scholar 

  70. I. Müller, Thermodynamics. (Pitman Advanced Publishing Program, Pitman, Bosten, 1985)

    Google Scholar 

  71. I. Müller, W.H. Müller, Fundamentals of Thermodynamics and Applications: With Historical Annotations and Many Citations from Avogadro to Zermelo. (Springer, Berlin, 2009)

    Google Scholar 

  72. I. Müller, Lectures on Statistical Mechanics, Parts I and II. (Johns Hopkins University, Baltimore, 1974) Lecture Script

    Google Scholar 

  73. C. Truesdell, Lectures on Rational Mechanics. Statistical Mechanics. (Johns Hopkins University, Baltimore) Lecture Script

    Google Scholar 

  74. E. Schroedinger, Statistische Thermodynamik (Johann Ambrosius Barth, Leipzig, 1952)

    MATH  Google Scholar 

  75. I. Müller, W. Weiss, Entropy and Energy. (Springer, Berlin, 2005)

    Google Scholar 

  76. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, vol 7, Course of Theoretical Physics. 3 edn (Elsevier, Amsterdam, 1986)

    Google Scholar 

  77. W. Thomson, On the equilibrium of vapour at a curved surface of liquid. Proc. Roy. Soc. Edinburgh 7, (1872)

    Google Scholar 

  78. I. Müller, Boiling and condensation with interfacial energy. Meccanica 31, (1996)

    Google Scholar 

  79. Y. Huo, I. Müller, Nucleation of droplets in a binary mixture. Meccanica 38, 493–504 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  80. J. Ansorg, I. Müller, Phase diagrams—heat of mixing and interfacial energy. In Solid Mechanics and its Applications, ed. by P. Argoul, M. Fremond, Q.S. Nguyen, IUMTAM Symposium on Variations of Domains and Free-Boundary Problems in Solid Mechanics. (Kluwer Academic Press, Dordrecht, 1999)

    Google Scholar 

  81. R.C. Pond, S. Celotto, J.P. Hirth, A comparison of the phenomenological theory of martensitic transformations with a model based on interfacial defects. Acta Mater. 51, 5385–5398 (2003)

    Article  Google Scholar 

  82. Z. Zhang, R.D. James, S. Müller, Energy barriers and hysteresis in martensitic phase transformations. Acta Mater. 57, 4332–4352 (2009)

    Article  Google Scholar 

  83. J. Cui, Y. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, I. Takeuchi, Combinatorial search of thermoelastic shape memory alloys with extremely small hysteresis width. Nature Mat. 5, 286–290 (2006)

    Article  ADS  Google Scholar 

  84. T. Simon, A. Kröger, A.Dlouhy, G. Eggeler. In-situ tem cooling/heating experiments on deformed NiTi shape memory single crystals. in ESOMAT 2009. EDP Sciences (2009)

    Google Scholar 

  85. T. Simon, A. Kröger, A. Dlouhy, G. Eggeler, On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater. 58(5), 1850–1860 (2010)

    Article  Google Scholar 

  86. H. Sitepu, W.W. Schmahl, J. Khalil-Allafi, G. Eggeler, A. Dlouhy, D.M. Többens, M. Tovar, Neutron diffraction phase analysis during thermal cycling of a Ni-rich NiTi shape memory alloy using the rietveld method. Scripta Materialia 46, 543–548 (2002)

    Article  Google Scholar 

  87. A. Dlouhy, J. Khalil-Allafi, G. Eggeler, Multiple-step martensitic transformations in Ni-rich NiTi alloys — an in-situ transmission electron microscopy investigation. Phil. Mag. 83, 339–363 (2003)

    Article  ADS  Google Scholar 

  88. E. Hornbogen, Lattice defects and martensitic transformation, in Micromechanics of advanced materials, ed. by S.N.G. Chu, P.K. Liaw, R.J. Arsenault, K. Sadananda, K.S. Chan, W.W. Gerberich, C.C. Chau, T.M. Kung (The Minerals, Metals & Materials Socienty, 1995), pp. 307–315

    Google Scholar 

  89. F.C. Lovey, V. Torra, Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu-Zn-Al. Progress in Materials Science 44, 189–289 (1999)

    Article  Google Scholar 

  90. M. Inami, T. Ishii, X. Ren, K. Otsuka, A study of martensitic transformation in Au-51.5at%Cd alloy. in Materials Science Forum, (Kanazawa, Japan, 2000), pp. 397–400

    Google Scholar 

  91. S. Kustov, J. Pons, E. Cesari, J. Van Humbeeck, Pinning-induced stabilization of martensite PartII. Kinetic stabilization in cu-zn-al alloy due to pinning of moving interfaces. Acta Mater. 52, 3083–3096 (2004)

    Article  Google Scholar 

  92. J.I. Pérez-Landazábal, V. Recarte, V. Sánchez-Alarcos, R.G. Leisure, Defect pinning of interface motion in thermoelastic structural transitions of Cu-Al-Ni shape-memory alloy. Phys. Rev. B 73(224101), 1–9 (2006)

    Google Scholar 

  93. J.I. Pérez-Landazábal, V. Recarte, V. Sánchez-Alarcos, R.G. Leisure, Defect pinning of interface motion in thermoelastic structural transitions of Cu-Al-Ni shape-memory alloy. Phys. Rev. B 73(224101), 1–9 (2006)

    Google Scholar 

  94. F.J. Pérez-Reche, E. Vives, M. Stipcich, L. Mañosa, A. Planes, Kinetics of martensitic transitions in Cu-Al-Mn under thermal cycling:Analysis at multiple length scales. Phys. Rev. B 69(64101), 1–7 (2004)

    Google Scholar 

  95. M.C. Gallardo, J. Manchado, F.J. Romero, J. del Cerro, E.K.H. Salje, A. Planes, E. Vives, Avalache criticality in martensitic transition of Cu\(_{67.64}\)Zn\(_{16.71}\)Al\(_{15.65}\) shape memory alloy: A calorimetric and acoustic emission study. Phys. Rev. B 81(174102), 1–8 (2010)

    Google Scholar 

  96. J.C. Maxwell, Capillary Action. Encyclopaedia Britannica. 9th edn (1876)

    Google Scholar 

  97. F. Richter, O. Kastner, G. Eggeler, Finite-element model for simulations of fully coupled thermomechanical processes in shape memory alloys. in ESOMAT 2009. EDP Sciences (2009)

    Google Scholar 

  98. K. Tanaka, S. Kobayashi, Y. Sato, Thermomechanics of transformation pseudoplasticity and shape memory effect in alloys. Int. J. Plasticity 2(1), 59–72 (1986)

    Article  Google Scholar 

  99. C. Liang, C. Rogers, One-dimensional thermomechanical constitutive relations for shape memory materials. J. Intel. Mat. Syst. Str. 1, 207–234 (1990)

    Article  Google Scholar 

  100. F. Auricchio, A robust integration algorithm for a finite-strain shape-memory-alloy superelastic model. Int. J. Plasticity 17, 971–990 (2001)

    Article  MATH  Google Scholar 

  101. L.C. Brinson, One-dimensional constitutive behavior of shape memory alloys: Thermomechanical drivation with non-constant material functions and redefined martensite internal variable. J. Intel. Mat. Syst. Str. 4, 229–242 (1993)

    Article  Google Scholar 

  102. D. Helm, Formgedächtnislegierungen—Experimentelle Untersuchung, phänomenologische Modellierung und numerische Simulation der thermomechanischen Materialeigenschaften. PhD thesis, (University Kassel, Germany, 2001)

    Google Scholar 

  103. C. Müller, O.T. Bruhns, Modelling of ploycrystalline shape memory alloys at finite strains based upon the logarithmic stress state. J. Phys. IV(112), 187–190 (2003)

    Google Scholar 

  104. F. Auricchio, L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int. J. Numer. Meth. Eng. 61, 807–836 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  105. S. Reese, D. Christ, Finite deformation pseudo-elasticity of shape memory alloys— Constitutive modelling and finite element implementation. Int. J. Plasticity 24(3), 455–482 (2008)

    Google Scholar 

  106. F. Falk, Model free energy, mecahnics and thermodynamics of shape memory alloys. Acta Metall. 28, 1773–1780 (1980)

    Article  Google Scholar 

  107. B. Raniecki, C. Lexcellent, Thermodynamics of isotropic pseudoelasticity in shape memory alloys. Eur. J. Mech. A-Solid 17(2), 185–205 (1998)

    Article  MATH  Google Scholar 

  108. D.C. Lagoudas, Z. Bo, A. Bhattacharyya, A thermodynamic constitutive model for gradual phase transformation of sma materials. in Mathematics And Control In Smart Structures - Smart Structures And Materials, ed. by V.V. Varadan, J. Chandra, vol 2715 of Proceedings of Society of Photo-Optical Instrumentation Engineering (SPIE), (SPIE, San Diego, CA, 1996), pp. 482–493

    Google Scholar 

  109. R. Heinen, K. Hackl, On the calculation of energy-minimizing phase fractions in shape memory alloys. Comput. Method. Appl. M. 196(21–24), 2401–2412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  110. I. Müller, A model for a body with shape-memory. Arch. Ration. Mech. An. 70, 61–77 (1979)

    Article  MATH  Google Scholar 

  111. M. Achenbach, A model for an alloy with shape memory. Int. J. Plasticity 5, 371–395 (1989)

    Article  Google Scholar 

  112. I. Müller, S. Seelecke, Thermodynamic aspects of shape memory alloys. Math. Comput. Model. 34, 1307–1355 (2001)

    Article  MATH  Google Scholar 

  113. S. Seelecke, Modeling the dynamic behavior of shape memory alloys. Int. J. Nonlin. Mech. 37, 1363–1374 (2002)

    Article  MATH  Google Scholar 

  114. F. Richter, O. Kastner, G. Eggeler, Finite-element simulation of the anti-buckling-effect of a shape memory alloy bar. J. Mater. Eng. Perform. 20, 719–730 (2011) 10.1007/s11665-010-9797-8

    Google Scholar 

  115. F. Richter, O. Kastner, G. Eggeler, Implementation of the Müller-Achenbach-Seelecke model for shape memory alloys in ABAQUS. J. Mat. Eng. Perf. 18(5–6), 626–630 (2009) Special issue containing contributions from the Shape Memory and Superelastic Technology Conference, Stresa, Italy, September 21–25 2008

    Google Scholar 

  116. F. Richter, Finite-element-simulations of polycrystalline shape memory alloys. In Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring 2008, (San Diego, CA, USA, 2008)

    Google Scholar 

  117. S. Jaeger, Experimentelle und theoretische Untersuchungen zu Phasenumwandlungen in NiTi-Blechen Master’s thesis (Ruhr-University, Bochum, 2010)

    Google Scholar 

  118. Y. Xie, Modell zur Simulation einer mehrphasigen Gedächtnislegierung unter mehrachsiger Belastung. PhD thesis, (Technical University of Berlin, 1994)

    Google Scholar 

  119. O. Kastner, F. Richter, G. Eggeler, Multivariant formulation of the thermomechanically coupled müller-achenbach-seelecke-model for shape memory alloys. in Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, (ASME, Oxnard, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kastner, O. (2012). Preparations. In: First Principles Modelling of Shape Memory Alloys. Springer Series in Materials Science, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28619-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28619-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28618-6

  • Online ISBN: 978-3-642-28619-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics