Skip to main content

Synthesis of Tailored Nanoparticles in Flames: Chemical Kinetics, In Situ Diagnostics, Numerical Simulation, and Process Development

  • Chapter
  • First Online:
Nanoparticles from the Gasphase

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Flame synthesis of nanoparticles provides access to a wide variety of metal oxide nanoparticles. Detailed understanding of the underlying fundamental processes is a prerequisite for the synthesis of specific materials with well-defined properties. Multiple steps from gas-phase chemistry, inception of first particles and particle growth are thus investigated in detail to provide the information required for setting up chemistry and particle dynamics models that allow simulating particle synthesis apparatus. Experiments are carried out in shock wave and flow reactors with in situ optical diagnostics, such as absorption, laser-induced fluorescence, and laser-induced incandescence, with in-line sampling via mass spectrometry as well as with thermophoretic sampling for ex situ microscopic analysis and electronic characterization. Focus is on tuning particle size as well as crystallinity and stoichiometry, with a specific focus on sub-stoichiometric materials with tunable composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.E. Pratsinis, Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24(3), 197–219 (1998)

    Google Scholar 

  2. M.S. Wooldridge, Gas-phase combustion synthesis of particles. Prog. Energy Combust. Sci. 24(1), 63–87 (1998)

    Google Scholar 

  3. P. Roth, Particle synthesis in flames. Proc. Combust. Inst. 31, 1773–1788 (2007)

    Google Scholar 

  4. L. Madler, H.K. Kammler, R. Mueller, S.E. Pratsinis, Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33(2), 369–389 (2002)

    Google Scholar 

  5. W.J. Stark, S.E. Pratsinis, Aerosol flame reactors for manufacture of nanoparticles. Powder Technol. 126(2), 103–108 (2002)

    Google Scholar 

  6. D.E. Rosner, Flame synthesis of valuable nanoparticles: recent progress/current needs in areas of rate laws, population dynamics, and characterization. Ind. Eng. Chem. Res. 44(16), 6045–6055 (2005)

    Google Scholar 

  7. B. Giesen, H. Wiggers, A. Kowalik, P. Roth, Formation of Si-nanoparticles in a microwave reactor: comparison between experiments and modelling. J. Nanopart. Res. 7(1), 29–41 (2005)

    Google Scholar 

  8. K. Hitzbleck, H. Wiggers, P. Roth, Controlled formation and size-selected deposition of indium nanoparticles from a microwave flow reactor on semiconductor surfaces. Appl. Phys. Lett. 87(9), 093105 (2005)

    ADS  Google Scholar 

  9. L.J. Kecskes, R.H. Woodman, S.F. Trevino, B.R. Klotz, S.G. Hirsch, B.L. Gersten, Characterization of a nanosized iron powder by comparative methods. Kona 21, 143–150 (2003)

    Google Scholar 

  10. D.V. Szabo, D. Vollath, W. Arnold, Microwave plasma synthesis of nanoparticles: application of microwaves to produce new materials. Ceramic Trans. 111(Microwaves: Theory and Application in Materials Processing V), 217–224 (2001)

    Google Scholar 

  11. G.D. Ulrich, Theory of particle formation and growth in oxide synthesis flames. Combust. Sci. Technol. 4(2), 47–57 (1971)

    ADS  Google Scholar 

  12. G.D. Ulrich, Flame synthesis of fine particles. Chem. Eng. News 62(32), 22–29 (1984)

    Google Scholar 

  13. J.J. Helble, A.F. Sarofim, Factors determining the primary particle size of flame-generated inorganic aerosols. J. Colloid Interf. Sci. 128(2), 348–362 (1989)

    Google Scholar 

  14. T. Matsoukas, S.K. Friedlander, Dynamics of aerosol agglomerate formation. J. Coll. Int. Sci. 146(2), 495–506 (1991)

    Google Scholar 

  15. D.R. Hardesty, F.J. Weinberg, Electrical control of particulate pollutants from flames. Proc. Combust. Inst. 14(1), 907–918 (1973)

    Google Scholar 

  16. H.K. Kammler, R. Jossen, P.W. Morrison, S.E. Pratsinis, G. Beaucage, The effect of external electric fields during flame synthesis of titania. Powder Technol. 135, 310–320 (2003)

    Google Scholar 

  17. J. Knipping, H. Wiggers, B.F. Kock, T. Hulser, B. Rellinghaus, P. Roth, Synthesis and characterization of nanowires formed by self-assembled iron particles. Nanotechnology 15(11), 1665–1670 (2004)

    ADS  Google Scholar 

  18. S. Von Gersum, P. Roth, Oxidation of fullerene C\(_{60}\) behind shock waves: tunable diode laser measurements of CO and CO\(_{2}\). Infrared Phys. Technol. 37(1), 167–171 (1996)

    ADS  Google Scholar 

  19. S. Von Gersum, P. Roth, Soot oxidation in high temperature N\(_{2}\)O/Ar and NO/Ar mixtures. Proc. Combust. Inst. 24(1), 999–1006 (1992)

    Google Scholar 

  20. M. Frenklach, L. Ting, H. Wang, M.J. Rabinowitz, Silicon particle formation in pyrolysis of silane and disilane. Isr. J. Chem. 36(3), 293–303 (1996)

    Google Scholar 

  21. J. Herzler, R. Leiberich, H.J. Mick, P. Roth, Shock tube study of the formation of TiN molecules and particles. Nanostructured Mater. 10(7), 1161–1171 (1999)

    Google Scholar 

  22. A. Giesen, J. Herzler, P. Roth, Kinetics of the Fe-atom condensation based on Fe-concentration measurements. J. Phys. Chem. A 107(26), 5202–5207 (2003)

    Google Scholar 

  23. S.K. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics (Oxford University Press, Oxford, 2000)

    Google Scholar 

  24. D. Woiki, A. Giesen, P. Roth, A shock tube study on the thermal decomposition of Fe(CO)\(_{5}\). In: 23rd International Symposium on Shock Waves, Fort Worth, Texas (2001)

    Google Scholar 

  25. S.H. Bauer, D.J. Frurip, Homogeneous nucleation in metal vapors. 5. A self-consistent kinetic model. J. Phys. Chem. A 81(10), 1015–1024 (1977)

    Google Scholar 

  26. D.E. Jensen, Condensation modeling for highly supersaturated vapors: application to iron. J. Chem. Soc. Faraday Trans. 76(11), 1494–1515 (1980).

    Google Scholar 

  27. M. Fikri, M. Bozkurt, H. Somnitz, C. Schulz, High temperature shock-tube study of the reaction of gallium with ammonia. Phys. Chem. Chem. Phys. 13(9), 4149–4154 (2011)

    Google Scholar 

  28. M. Fikri, A. Makeich, G. Rollmann, C. Schulz, P. Entel, Thermal decomposition of trimethylgallium Ga(CH\(_3\))\(_3\): a shock-tube study and first-principles calculations. J. Phys. Chem. A 112(28), 6330–6337 (2008)

    Google Scholar 

  29. J. Herzler, P. Roth, C. Schulz, Kinetics of the reaction of Ga atoms with O\(_{2}\) in The International Shock Wave Symposium, Bangalore, 2005

    Google Scholar 

  30. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W. C. Gardiner Jr., V.V. Lissianski, Z. Qin, http://www.me.berkeley.edu/gri_mech/

  31. A. Giesen, D. Woiki, J. Herzler, P. Roth, Oxidation of Fe atoms by O\(_{2}\) based on Fe- and O-concentration measurements. Proc. Combust. Inst. 29, 1345–1352 (2002)

    Google Scholar 

  32. P. Roth, A. Hospital, Design and test of a particle mass-spectrometer (Pms). J. Aerosol Sci. 25(1), 61–73 (1994)

    Google Scholar 

  33. J. Griesheimer, K.H. Homann, Large molecules, radicals ions, and small soot particles in fuel-rich hydrocarbon flames: Part II. Aromatic radicals and intermediate PAHs in a premixed low-pressure naphthalene/oxygen/argon flame. Proc. Combust. Inst. 27, 1753–1759 (1998)

    Google Scholar 

  34. R. Humpfer, H. Oser, H.-H. Grotheer, T. Just, The reaction system CH\(_{3}\)+OH at intermediate temperatures. Appearance of a new product channel. Proc. Combust. Inst. 25, 721–731 (1994)

    Google Scholar 

  35. I.K. Lee, M. Winterer, Aerosol mass spectrometer for the in situ analysis of chemical vapor synthesis processes in hot wall reactors. Rev. Sci. Instrum. 76(9), 095194 (2005)

    Google Scholar 

  36. N.A. Fuchs, On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Pure Appl. Geophys. 56(1), 185–193 (1963)

    Google Scholar 

  37. A. Hospital, P. Roth, In-situ mass growth measurements of charged soot particles from low pressure flames. Proc. Combust. Inst. 23, 1573–1579 (1991)

    Google Scholar 

  38. T.P. Huelser, A. Lorke, P. Ifeacho, H. Wiggers, C. Schulz, Core and grain boundary sensitivity of tungsten-oxide sensor devices by molecular beam assisted particle deposition. J. Appl. Phys. 102(12), 124305 (2007)

    Google Scholar 

  39. H. Maetzing, W. Baumann, M. Hauser, H.R. Paur, H. Seifert, A. Van Raaij, P. Roth, A mass spectrometer for nanoparticles. VDI-Berichte 1803 (Nanofair 2003: New Ideas for Industry, 2003), 327–330 (2003)

    Google Scholar 

  40. M.G.D. Strecker, P. Roth, in Fine Solid Particles, ed. by J. Schwedes, S. Bernotat (Shaker Verlag, Aachen, 1997)

    Google Scholar 

  41. A.P. George, R.D. Murley, E.R. Place, Formation of titanium dioxide aerosol from the combustion supported reaction of titanium tetrachloride and oxygen. Faraday Symposia Chem. Soc. 7, 63–71 (1973)

    Google Scholar 

  42. R.A. Dobbins, C.M. Megaridis, Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir 3(2), 254–259 (1987)

    Google Scholar 

  43. C. Janzen, H. Kleinwechter, J. Knipping, H. Wiggers, P. Roth, Size analysis in low-pressure nanoparticle reactors: comparison of particle mass spectrometry with in situ probing transmission electron microscopy. J. Aerosol Sci. 33(6), 833–841 (2002)

    Google Scholar 

  44. K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Combustion at the focus: laser diagnostics and control. Proc. Combust. Inst. 30, 89–123 (2005)

    Google Scholar 

  45. H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, C. Schulz, Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry. Appl. Phys. B 88, 373–377 (2007)

    ADS  Google Scholar 

  46. C. Hecht, H. Kronemayer, T. Dreier, H. Wiggers, C. Schulz, Imaging measurements of atomic iron concentration with laser-induced fluorescence in a nano-particle synthesis flame reactor Appl. Phys. B 94, 119–125 (2009)

    Google Scholar 

  47. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Comparison of LII and TEM sizing during synthesis of iron particle chains. Proc. Combust. Inst. 30, 1689–1697 (2005)

    Google Scholar 

  48. M. Tamura, J. Luque, J.E. Harrington, P.A. Berg, G.P. Smith, J.B. Jeffries, D.R. Crosley, Laser-induced fluorescence of seeded nitric oxide as a flame thermometer. Appl. Phys. B 66(4), 503–510 (1998)

    ADS  Google Scholar 

  49. W.G. Bessler, F. Hildenbrand, C. Schulz, Two-line laser-induced fluorescence imaging of vibrational temperatures of seeded NO. Appl. Opt. 40, 748–756 (2001)

    ADS  Google Scholar 

  50. W.G. Bessler, C. Schulz, Quantitative multi-line NO-LIF temperature imaging. Appl. Phys. B 78, 519–533 (2004)

    ADS  Google Scholar 

  51. R.W. Dibble, R.E. Hollenbach, Laser Rayleigh thermometry in turbulent flames. Proc. Combust. Inst. 18, 1489–1499 (1981)

    Google Scholar 

  52. D. Hoffman, K.-U. Münch, A. Leipertz, Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering. Opt. Lett. 21, 525–527 (1996)

    ADS  Google Scholar 

  53. K. Kohse-Höinghaus, J.B. Jeffries (eds.), Applied Combustion Diagnostics (Taylor and Francis, New York, 2002)

    Google Scholar 

  54. F. Beyrau, A. Bräuer, T. Seeger, A. Leipertz, Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering. Opt. Lett. 29(3), 247–249 (2003)

    ADS  Google Scholar 

  55. M.G. Allen, Diode laser absorption sensors for gas dynamic and combustion flows. Meas. Sci. Technol. 9(4), 545–562 (1998)

    ADS  Google Scholar 

  56. A.O. Vyrodow, J. Heinze, M. Dillmann, U.E. Meier, W. Stricker, Laser-induced fluorescence thermometry and concentration measurements on NO A-X (0,0) transitions in the exhaust gas of high pressure CH\(_{4}\)/air flames. Appl. Phys. B. 61, 409–414 (1995)

    ADS  Google Scholar 

  57. T. Lee, W.G. Bessler, H. Kronemayer, C. Schulz, J.B. Jeffries, R.K. Hanson, Quantitative temperature measurements in high-pressure flames with multi-line NO-LIF thermometry. Appl. Opt. 44(31), 6718–6728 (2005)

    ADS  Google Scholar 

  58. I. Düwel, H.W. Ge, H. Kronemayer, R. Dibble, E. Gutheil, C. Schulz, J. Wolfrum, Experimental and numerical characterization of a turbulent spray flame. Proc. Combust. Inst. 31, 2247–2255 (2007)

    Google Scholar 

  59. H. Kronemayer, W.G. Bessler, C. Schulz, Gas-phase temperature imaging in spray systems using multi-line NO-LIF thermometry. Appl. Phys. B 81(8), 1071–1074 (2005)

    ADS  Google Scholar 

  60. W.G. Bessler, C. Schulz, V. Sick, J.W. Daily, A versatile modeling tool for nitric oxide LIF spectra (www.lifsim.com). In: 3rd Joint meeting of the US sections of The Combustion Institute, Chicago, 01–06 2003, pp. PI05

  61. D. Lindackers, M.G.D. Strecker, P. Roth, C. Janzen, S.E. Pratsinis, Formation and growth of SiO\(_{2}\) particles in low pressure H\(_{2}\)/O\(_{2}\)/Ar flames doped with SiH\(_{4}\). Combust. Sci. Technol. 123(1–6), 287–315 (1997)

    Google Scholar 

  62. H. Kunieda, T.J. Turner, A. Hisamitsu, K. Koyama, R. Mushotzky, Y. Tsusaka, Rapid variabilita of the iron fluorescence line from the Seyfert 1 galaxy NGC6814. Nature 345, 786–788 (1990)

    ADS  Google Scholar 

  63. Y. Ralchenko, NIST Atomic spectra Darabase (Version 3.1.2), [Online]. Available: http://physics.nist.gov/asd3 [2007, August 1]. National Institute of Standards and Technology (2007)

  64. M.D. Rumminger, D. Reinelt, V. Babushok, G.T. Linteris, Numerical study of the inhibition of premixed and diffusion flames by iron pentacarbonyl. Combust. Flame 116(1–2), 207–219 (1999)

    Google Scholar 

  65. U. Bonne, W. Jost, H.G. Wagner, Iron pentacarbonyl in methane-oxygen (or air) flames. Fire Res. Abstr. Rev. 4, 6–18 (1962)

    Google Scholar 

  66. K. Tian, Z.S. Li, S. Staude, B. Li, Z.W. Sun, A. Lantz, M. Aldén, B. Atakan, Proc. Combust. Inst. 32, 445–452 (2009)

    Google Scholar 

  67. M.J. Dyer, D.R. Crosley, Two-dimensional imaging of OH laser-induced fluorescence in a flame. Opt. Lett. 7(8), 382–384 (1982)

    ADS  Google Scholar 

  68. H.W. Kim, M. Choi, In situ line measurement of mean aggregate size and fractal dimension along the flame axis by planar laser light scattering. J. Aerosol Sci. 34(12), 1633–1645 (2003)

    MathSciNet  Google Scholar 

  69. R. Starke, P. Roth, Soot particle sizing by LII during shock tube pyrolysis of C\(_{6}\)H\(_{6}\). Combust. Flame 127(4), 2278–2285 (2001)

    Google Scholar 

  70. A. D’Anna, A. Rolando, C. Allouis, P. Minutolo, A. D’Alessio, Nano-organic carbon and soot particle measurements in a laminar ethylene diffusion flame. Proc. Combust. Inst. 30, 1449–1456 (2005)

    Google Scholar 

  71. L.A. Melton, Soot diagnostics based on laser heating. Appl. Opt. 23(13), 2201–2208 (1984)

    ADS  Google Scholar 

  72. C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Laser-induced incandescence: recent trends and current questions Appl. Phys. B 83(3), 333–354 (2006)

    Google Scholar 

  73. A.V. Filippov, M.W. Markus, P. Roth, In situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination. J. Aerosol Sci. 30(1), 71–87 (1999)

    Google Scholar 

  74. A.V. Filippov, D.E. Rosner, Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime. Int. J. Heat Mass Transf. 43(1), 127–138 (2000)

    MATH  Google Scholar 

  75. R.L. van der Wal, Soot precursor material: Visualization via simultaneous lIF-LII and characterization via tem. Proc. Combust. Inst. 26(2), 2269–2275 (1996)

    Google Scholar 

  76. S. Will, S. Schraml, K. Bader, A. Leipertz, Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence. Appl. Opt. 37(24), 5647–5658 (1998)

    ADS  Google Scholar 

  77. C. Schulz, Laser-induced incandescence: quantitative interpretation, modeling, application. in Proceedings International Bunsen Discussion Meeting and Workshop, Duisburg, Germany, Sept 25–28, 2005, ISSN 1613–0073, Vol. 195, CEUR Workshop Proceedings, (http://CEUR-ws.org/Vol-195/)

  78. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.-P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, S. Suntz, Modeling laser-induced incandescence of soot: a summary and comparison of LII models. Appl. Phys. B 87, 503–521 (2007)

    ADS  Google Scholar 

  79. G.T. Linteris, V.I. Babushok, Promotion or inhibition of hydrogen-air ignition by iron-containing compounds. Proc. Combust. Inst. 33, 2535–2542 (2009)

    Google Scholar 

  80. A.D. Randolph, M.A. Larson, Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization (Academic Press, New York, 1971)

    Google Scholar 

  81. R. McGraw, Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27, 255–265 (1997)

    Google Scholar 

  82. D.L. Marchisio, R.D. Virgil, R.O. Fox, Quadrature method of moments for aggregation-breakage processes. J. Coll. Int. Sci. 258, 322–334 (2003)

    Google Scholar 

  83. D.L. Marchisio, R.O. Fox, Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36(1), 43–73 (2005)

    Google Scholar 

  84. F.E. Kruis, K.A. Kusters, S.E. Pratsinis, B. Scareltt, A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Sci. Technol. 19, 514–526 (1993)

    Google Scholar 

  85. C. Janzen, P. Roth, Formation and characteristics of Fe\(_{2}\)O\(_{3}\) nano-particles in doped low pressure H\(_{2}\)/O\(_{2}\)/Ar flames. Combust. Flame 125(3), 1150–1161 (2001)

    Google Scholar 

  86. G. Lask, H.G. Wagner, Influence of additives on the velocity of laminar flames. Proc. Combust. Inst. 8, 432–438 (1962)

    Google Scholar 

  87. P. Ifeacho, T. Huelser, H. Wiggers, C. Schulz, P. Roth, Synthesis of SnO\(_{2-x}\) nanoparticles tuned between 0 \(<\) x \(<\) 1 in a premixed low pressure H\(_{2}\)/O\(_{2}\)/Ar flame. Proc. Combust. Inst. 31, 1805–1812 (2007)

    Google Scholar 

  88. M.A. Mueller, R.A. Yetter, F.L. Dryer, Flow reactor studies and kinetic modeling of the H\(_{2}\)/O\(_{2}\)/NO\(_{x}\) and CO/H\(_{2}\)O/O\(_{2}\)/NO\(_{x}\) reactions. Int. J. Chem. Kin. 31(10), 705–724 (1999)

    Google Scholar 

  89. B.J. McBride, S. Gordon, M.A. Reno, Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species. NASA, Report TM-4513 (1993)

    Google Scholar 

  90. Y. Sawada, Y. Kageyama, M. Iwata, A. Tasdaki, Synthesis and magnetic properties of ultrafine iron particles prepared by pyrolysis of carbonyl iron. Jap. J. Appl. Phys. 31(12A), 3858 (1992)

    Google Scholar 

  91. S. Staude, C. Hecht, I. Wlokas, C. Schulz, B. Atakan, Experimental and numerical investigation of Fe(CO)\(_{5}\) addition to a laminar premixed hydrogen/oxygen/argon flame. Z. Phys. Chem. 223, 639–649 (2009)

    Google Scholar 

  92. I. Wlokas, C. Schulz, Model for the formation of Fe\(_{2}\)O\(_{3}\) in premixed Fe(CO)\(_{5}\)-doped low-pressure H\(_{2}\)/O\(_{2}\) flames. European Combustion Meeting (2011)

    Google Scholar 

  93. D.E. Jensen, G.A.J. Jones, Chem. Phys. 60, 3421 (1974)

    ADS  Google Scholar 

  94. A. Fontijn, S.C. Kurzius, J.J. Houghton, Proc. Combust. Inst. 14, 167 (1973)

    Google Scholar 

  95. M. Helmer, J.M.C. Plane, Experimental and theoretical study of the reaction Fe + O\(_{2}\)+ N\(_{2}->\) FeO\(_{2}\)+ N\(_{2}\). J. Chem. Soc. Faraday Trans. 90(3), 395–402 (1994)

    Google Scholar 

  96. U.S. Akhamodov, I.S. Zaslonko, V.N. Smirnov, Kinet. Catal. 29(2), 291 (1988)

    Google Scholar 

  97. M.D. Allendorf, J.R. Bautista, E. Potkay, Temperature measurements in a vapor axial deposition flame by spontaneous Raman spectroscopy. J. Appl. Phys. 66(10), 5046–5051 (1989)

    ADS  Google Scholar 

  98. H.F. Calcote, W. Felder, A new gas-phase combustion synthesis process for pure metals, alloys, and ceramics. Proc. Combust. Inst. 24(1), 1869–1876 (1992)

    Google Scholar 

  99. R.L. Axelbaum, Synthesis of stable metal and non-oxide ceramic nanoparticles in sodium/halide flames. Powder Metallurgy 43(4), 323–325 (2000)

    Google Scholar 

  100. R.L. Axelbaum, D.P. Dufaux, C.A. Frey, S.M.L. Sastry, A flame process for synthesis of unagglomerated, low-oxygen nanoparticles: application to Ti and TiB\(_{2}\). Metall. Mat. Trans. B 28(6), 1199–1211 (1997)

    Google Scholar 

  101. K. Brezinsky, J.A. Brehm, C.K. Law, I. Glassman, Supercritical combustion synthesis of titanium nitride. Proc. Combust. Inst. 26(2), 1875–1881 (1996)

    Google Scholar 

  102. I. Glassman, K.A. Davis, K. Brezinsky, A gas-phase combustion synthesis process for non-oxide ceramics. Proc. Combust. Inst. 24(1), 1877–1882 (1992)

    Google Scholar 

  103. B.W. Gerhold, K.E. Inkrott, Nonoxide ceramic powder synthesis. Combust. Flame 100(1–2), 146–152 (1995)

    Google Scholar 

  104. K. Brezinsky, Gas-phase combustion synthesis of materials. Proc. Combust. Inst. 26(2), 1805–1816 (1996)

    Google Scholar 

  105. P.T. Spicer, C. Artelt, S. Sanders, S.E. Pratsinis, Flame synthesis of composite carbon black-fumed silica nanostructured particles. J. Aerosol Sci. 29(5–6), 647–659 (1998)

    Google Scholar 

  106. B.D. Merkle, R.N. Kniseley, F.A. Schmidt, I.E. Anderson, Superconducting yttrium barium copper oxide (YBa\(_{2}\)Cu\(_{3}\)O\(_{x}\)) particulate produced by total consumption burner processing. Mat. Sci. Eng. A 124(1), 31–38 (1990)

    Google Scholar 

  107. M.R. Zachariah, S. Huzarewicz, Aerosol processing of yttrium barium copper oxide superconductors in a flame reactor. J. Mat. Res. 6(2), 264–269 (1991)

    ADS  Google Scholar 

  108. D.L. Hall, A.A. Wang, K.T. Joy, T.A. Miller, N.S. Wooldridge, Combustion synthesis and characterization of nanocrystalline tin and tin oxide (SnO\(^{x}\), x=0-2) particles. J. Am. Ceramic Soc. 87(11), 2033–2041 (2004)

    Google Scholar 

  109. T.A. Miller, S.D. Bakrania, C. Perez, M.S. Wooldridge, A new method for direct preparation of tin dioxide nanocomposite materials. J. Mat. Res. 20(11), 2977–2987 (2005). doi:10.1557/jmr.2005.0375

    ADS  Google Scholar 

  110. M. Huber, W.J. Stark, S. Loher, M. Maciejewski, F. Krumeich, A. Baiker, Flame synthesis of calcium carbonate nanoparticles. Chem. Commun. 5, 648–650 (2005)

    Google Scholar 

  111. R.N. Grass, W.J. Stark, Gas phase synthesis of fcc-cobalt nanoparticles. J. Mat. Chem. 16(19), 1825–1830 (2006)

    Google Scholar 

  112. V. Simanzhenkov, H. Wiggers, P. Roth, Properties of flame synthesized germanium oxide nanoparticles. J. Nanosci. Nanotechnol. 5(3), 436–441 (2005)

    Google Scholar 

  113. D.P. Belyung, A. Fontijn, The AlO+O\(_{2}\) reaction system over a wide temperature-range. J. Phys. Chem. A 99(32), 12225–12230 (1995)

    Google Scholar 

  114. A. Fontijn, Wide-temperature range observations on reactions of metal atoms and small radicals. Pure Appl. Chem. 70(2), 469–476 (1998)

    Google Scholar 

  115. J. Herzler, P. Roth, High temperature gas phase reaction of SnO\(_{g}\) with O\(_{2}\). Phys. Chem. Chem. Phys. 5(8), 1552–1556 (2003)

    Google Scholar 

  116. A. Gupta, P. Ifeacho, C. Schulz, H. Wiggers, Synthesis of tailored WO\(_{3}\) and WO\(_{x}\) (2.9 \(<\) x \(<\) 3) nanoparticles by adjusting the combustion conditions in a H\(_{2}\)/O\(_{2}\)/Ar premixed flame reactor. Proc. Combust. Inst. 33(2), 1883–1890 (2011)

    Google Scholar 

  117. P. Ifeacho, H. Wiggers, P. Roth, SnO\(_{2}\)/TiO\(_{2}\) mixed oxide particles synthesized in doped premixed H\(_{2}\)/O\(_{2}\)/Ar flames. Proc. Combust. Inst. 30, 2577–2584 (2005)

    Google Scholar 

  118. B.K. McMillin, P. Biswas, M.R. Zachariah, In situ characterization of vapor phase growth of iron oxide-silica nanocomposites.1. 2-D planar laser-induced fluorescence and Mie imaging. J. Mat. Res. 11(6), 1552–1561 (1996)

    Google Scholar 

  119. S. Vemury, S.E. Pratsinis, Dopants in flame synthesis of titania. J. Am. Ceramic Soc. 78(11), 2984–2992 (1995)

    Google Scholar 

  120. M.R. Zachariah, M.I. Aquino, R.D. Shull, E.B. Steel, Formation of superparamagnetic nanocomposites from vapor-phase condensation in a flame. Nanostructured Mater. 5(4), 383–392 (1995)

    Google Scholar 

  121. A. Gutsch, J. Averdung, H. Muehlenweg, From technical development to successful nanotechnological product. Chemie Ingenieur Technik 77(9), 1377–1392 (2005)

    Google Scholar 

  122. C.H. Hung, J.L. Katz, Formation of mixed oxide powders in flames: Part I. Titania-silica. J. Mat. Res. 7(7), 1861–1869 (1992)

    Google Scholar 

  123. C.H. Hung, P.F. Miquel, J.L. Katz, Formation of mixed-oxide powders in flames Part 2: SiO\(_{2}\)-GeO\(_{2}\) and Al\(_{2}\)O\(_{3}\)-TiO\(_{2}\). J. Mat. Res. 7(7), 1870–1875 (1992)

    ADS  Google Scholar 

  124. S.H. Ehrman, S.K. Friedlander, M.R. Zachariah, Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame. J. Aerosol Sci. 29(5–6), 687–706 (1998)

    Google Scholar 

  125. S.H. Ehrman, S.K. Friedlander, M.R. Zachariah, Phase segregation in binary SiO\(_{2}\)/TiO\(_{2}\) and SiO\(_{2}\)/Fe\(_{2}\)O\(_{3}\) nanoparticle aerosols formed in a premixed flame. J. Mat. Res. 14(12), 4551–4561 (1999)

    ADS  Google Scholar 

  126. P.F. Miquel, J.L. Katz, Formation and characterization of nanostructured V-P-O particles in flames: a new route for the formation of catalysts. J. Mat. Res. 9(3), 746–754 (1994)

    ADS  Google Scholar 

  127. H. Schulz, L. Madler, S.E. Pratsinis, P. Burtscher, N. Moszner, Transparent nanocomposites of radiopaque, flame-made Ta\(_{2}\)O\(_{5}\)/SiO\(_{2}\) particles in an acrylic matrix. Adv. Funct. Mat. 15(5), 830–837 (2005)

    Google Scholar 

  128. N.N. Padurow, Mischbarkeit im System Rutil-Zinnstein. Naturwissenschaften 43(17), 395–396 (1956)

    ADS  Google Scholar 

  129. J. Shang, W.Q. Yao, Y.F. Zhu, N.Z. Wu, Structure and photocatalytic performances of glass/SnO\(_{2}\)/TiO\(_{2}\) interface composite film. Appl. Catalysis A 257(1), 25–32 (2004)

    Google Scholar 

  130. J. Yang, D. Li, X. Wang, X.J. Yang, L.D. Lu, Rapid synthesis of nanocrystalline TiO\(_{2}\)/SnO\(_{2}\) binary oxides and their photoinduced decomposition of methyl orange. J. Solid State Chem. 165(1), 193–198 (2002)

    ADS  Google Scholar 

  131. J. Lin, J.C. Yu, D. Lo, S.K. Lam, Photocatalytic activity of rutile Ti\(_{1-x}\)Sn\(_{x}\)O\(_{2}\) solid solutions. J. Catalysis 183(2), 368–372 (1999)

    Google Scholar 

  132. S. Tsantilis, S.E. Pratsinis, Soft- and hard-agglomerate aerosols made at high temperatures. Langmuir 20(14), 5933–5939 (2004)

    Google Scholar 

  133. K.K. Akurati, A. Vital, R. Hany, B. Bommer, T. Graule, M. Winterer, One-step flame synthesis of SnO\(_{2}\)/TiO\(_{2}\) composite nanoparticles for photocatalytic applications. Int. J. Photoenergy 7(4), 153–161 (2005)

    Google Scholar 

  134. C. Janzen, J. Knipping, B. Rellinghaus, P. Roth, Formation of silica-embedded iron-oxide nanoparticles in low-pressure flames. J. Nanopart. Res. 5(5–6), 589–596 (2003)

    Google Scholar 

  135. C.J. Butler, A.N. Hayhurst, E.J.W. Wynn, The size and shape of silica particles produced in flames of H\(_{2}\)/O\(_{2}\)/N\(_{2}\) with a silicon-containing additive. Proc. Combust. Inst. 29, 1047–1054 (2002)

    Google Scholar 

  136. M. Stjerndahl, M. Andersson, H.E. Hall, D.M. Pajerowski, M.W. Meisel, R.S. Duran, Superparamagnetic Fe\(_{3}\)O\(_{4}\)/SiO\(_{2}\) nanocomposites: enabling the tuning of both the iron oxide load and the size of the nanoparticles. Langmuir 24(7), 3532–3536 (2008)

    Google Scholar 

  137. M. Kroell, M. Pridoehl, G. Zimmermann, L. Pop, S. Odenbach, A. Hartwig, Magnetic and rheological characterization of novel ferrofluids. J. Magn. Magn. Mater. 289, 21–24 (2005)

    ADS  Google Scholar 

Download references

Acknowledgments

The financial support of this work through the German Research Foundation (DFG) within SFB445 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiggers, H., Fikri, M., Wlokas, I., Roth, P., Schulz, C. (2012). Synthesis of Tailored Nanoparticles in Flames: Chemical Kinetics, In Situ Diagnostics, Numerical Simulation, and Process Development. In: Lorke, A., Winterer, M., Schmechel, R., Schulz, C. (eds) Nanoparticles from the Gasphase. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28546-2_1

Download citation

Publish with us

Policies and ethics