Skip to main content

Pulmonary endothelium in acute lung injury: from basic science to the critically ill

  • Chapter
Applied Physiology in Intensive Care Medicine 2
  • 4307 Accesses

Abstract

Background: Pulmonary endothelium is an active organ possessing numerous physiological, immunological, and metabolic functions. These functions may be altered early in acute lung injury (ALI) and further contribute to the development of acute respiratory distress syndrome (ARDS). Pulmonary endothelium is strategically located to filter the entire blood before it enters the systemic circulation; consequently its integrity is essential for the maintenance of adequate homeostasis in both the pulmonary and systemic circulations. Noxious agents that affect pulmonary endothelium induce alterations in hemodynamics and hemofluidity, promote interactions with circulating blood cells, and lead to increased vascular permeability and pulmonary edema formation. Objective: We highlight pathogenic mechanisms of pulmonary endothelial injury and their clinical implications in ALI/ARDS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simionescu M. Lung endotheli- um: structure-function correlates. In: Crystal RG, West JB, editors. The Lung: scientific foundations. New York: Raven; 1991. p. 301–331.

    Google Scholar 

  2. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke A, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R, the Consensus Committee,. The American-European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;49:818–824.

    Google Scholar 

  3. Pittet JF, Mackersie RC, Martin TR, Matthay MA. Biological markers of acute lung injury: prognostic and pathogenic significance. Am J Respir Crit Care Med. 1997;155:1187–1205.

    PubMed  CAS  Google Scholar 

  4. Hassoun PM, Fanburg BL, Junod AF. Metabolic functions. In: Crystal RG, West JB, editors. The lung: scientific foundations. New York: Raven; 1991. p. 313–327.

    Google Scholar 

  5. Orfanos SE, Catravas JD. Metabolic functions of the pulmonary endo- thelium. In: Yacoub M, Pepper J, editors. Annual review of cardiac surgery. 6th ed. London: Current Science; 1993. p. 5259.

    Google Scholar 

  6. Aaronson PI, Robertson TP, Ward JPT. Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2002;132:107–120.

    Article  PubMed  CAS  Google Scholar 

  7. Wort SJ, Evans TW. The role of endothelium in modulating vascular control in sepsis and related conditions. Br Med Bull. 1999;55:30–48.

    Article  PubMed  CAS  Google Scholar 

  8. Park WY, Goodman RB, Steinberg KP, Ruzinski JT, Radella 2nd F, Park DR, Pugin J, Skerrett SJ, Hudson LD, Martin TR. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;164:1896–1903.

    PubMed  CAS  Google Scholar 

  9. Meyrick B. Pathology of the adult respiratory distress syndrome. Crit Care Clin. 1986;2:405–428.

    PubMed  CAS  Google Scholar 

  10. Mutunga M, Fulton B, Bullock R, Batchelor A, Gascoigne A, Gillespie JI, Baudouin SV. Circulating endo- thelial cells in patients with septic shock. Am J Respir Crit Care Med. 2001;163:195–200.

    PubMed  CAS  Google Scholar 

  11. Oberholzer A, Oberholzer C, Moldawer LL. Cytokine signalling-regulation of the immune response in normal and critically ill states. Crit Care Med. 2000;28(Suppl 4):N3–N12.

    Article  PubMed  CAS  Google Scholar 

  12. Mantovani A, Bussolini F, Introna M. Cytokine regulation of endothe- lial cell function: from molecular level to the bedside. Immunol Today. 1997;18:231239.

    Article  Google Scholar 

  13. Folkesson HG, Matthay MA, Hebert CA, Broaddus VC. Acid aspiration induced lung injury in rabbits is mediated by interleukin-8 dependent mechanisms. J Clin Invest. 1995;96:107–116.

    Article  PubMed  CAS  Google Scholar 

  14. Laffon M, Pittet JF, Modelska K, Matthay MA, Young DM. Inter- leukin-8 mediates injury from smoke inhalation to both the lung endothelial and the alveolar epithelial barriers in rabbits. Am J Respir Crit Care Med. 1999;160:1443–1449.

    PubMed  CAS  Google Scholar 

  15. Pulido EJ, Shames BD, Pennica D, O'Leary RM, Bensard DD, Cain BS, McIntyre Jr RC. Cardiotrophin-1 attenuates endotoxin-induced acute lung injury. J Surg Res. 1999;84:240–246.

    Article  PubMed  CAS  Google Scholar 

  16. Kawamae KK, Pristine G, Chiumello D, Tremblay LN, Slutsky AS. Partial liquid ventilation decreases serum tumor necrosis factor-a concentrations in a rat acid aspiration lung injury model. Crit Care Med. 2000;28:479–483.

    Article  PubMed  CAS  Google Scholar 

  17. Kuebler WM, Parthasarathi K, Wang PM, Bhattacharya J. A novel signalling mechanism between gas and blood compartments of the lung. J Clin Invest. 2000;105:905–913.

    Article  PubMed  CAS  Google Scholar 

  18. Grau GE, Mili N, Lou JN, Morel DR, Ricou B, Lucas R, Suter PM. Phenotypic and functional analysis of pulmonary microvascular endothelial cells from patients with acute respiratory distress syndrome. Lab Invest. 1996;74:761–770.

    PubMed  CAS  Google Scholar 

  19. Hashimoto S, Gon Y, Matsumoto K, Takeshita I, Takashi H. N-ace- tylcysteine attenuates TNF-a induced p38 MAP kinase activation and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells. Br J Pharmacol. 2001;132:270276.

    Article  Google Scholar 

  20. Matthay MA, Bhattacharya S, Gaver D, Ware LB, Lim LHK, Syrkina O, Eyal F, Hubmayr R. Ventilator-induced lung injury: in vivo and in vitro mechanisms. Am J Physiol Lung Cell Mol Physiol. 2002;283:L678–L682.

    PubMed  CAS  Google Scholar 

  21. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome. JAMA. 1999;282:54–61.

    Article  PubMed  CAS  Google Scholar 

  22. Frank JA, Gutierrez JA, Jones KD, Allen L, Dobbs L, Matthay MA. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med. 2002;165:242–249.

    PubMed  Google Scholar 

  23. Fan J, Ye RD, Malik AB. Tran- scriptional mechanisms of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2001;281:L1037–L1050.

    PubMed  CAS  Google Scholar 

  24. Blackwell TS, Christman JW. The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol. 1997;17:3–9.

    PubMed  CAS  Google Scholar 

  25. Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol. 2001;280:C719–C741.

    PubMed  CAS  Google Scholar 

  26. Abraham E (2000) nf-kb activation Crit Care Med 28 [Suppl 4]:N100- N104

    Google Scholar 

  27. Dschietzig T, Richter C, Pfannenschmidt G, Bartsch C, Laule M, Baumann G, Stangl K. Dexametha- sone inhibits stimulation of pulmonary endothelins by pro-inflammatory cy- tokines: possible involvement of a nuclear factor kb dependent mechanism. Intensive Care Med. 2001;27:751–756.

    Article  PubMed  CAS  Google Scholar 

  28. Quinlan GJ, Upton RL. Oxidant/ antioxidant balance in acute respiratory distress syndrome. In: Evans TW, Griffiths MJD, Keogh BF, editors. European respiratory monograph: ARDS, monograph 20, vol. 7. Sheffield: European Respiratory Society Journals; 2002. p. 33–46.

    Google Scholar 

  29. Bhatia M, Moochhala S. Role of inflammatory mediators in the patho- physiology of acute respiratory distress syndrome. J Pathol. 2004;202:145–156.

    Article  PubMed  CAS  Google Scholar 

  30. Haligren R, Samuelson T, Veng P, Modig I. Eosinophil activation in the lung is related to lung damage in adult respiratory distress syndrome. Am Rev Respir Dis. 1987;135:639–642.

    Google Scholar 

  31. Rowen JL, Hyde DM, McDonald RJ. Eosinophils cause acute edema- tous injury in isolated perfused rat lungs. Am Rev Respir Dis. 1990;142:215–220.

    PubMed  CAS  Google Scholar 

  32. Hasleton PS, Roberts TE. Adult respiratory distress syndrome-an update. Histopathology. 1999;34:285–294.

    Article  PubMed  CAS  Google Scholar 

  33. Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. FASEB J. 1994;8:504–512.

    PubMed  CAS  Google Scholar 

  34. Sheridan BC, McIntyre Jr RC, Moore EE, Meldrum DR, Agrafojo J, Fullerton DA. Neutrophils mediate pulmonary vasomotor dysfunction in en- dotoxin-induced acute lung injury. J Trauma. 1997;42:391–397.

    Article  PubMed  CAS  Google Scholar 

  35. Folkesson HG, Matthay MA. Inhibition of CD18 or CD11b attenuates acute lung injury after acid instillation in rabbits. J Appl Physiol. 1997;82:1743–1750.

    Article  PubMed  CAS  Google Scholar 

  36. Moriuchi H, Zaha M, Fukumoto T, Yuizono T. Activation of poly- morphonuclear leukocytes in oleic acid- induced lung injury. Intensive Care Med. 1998;24:709–715.

    Article  PubMed  CAS  Google Scholar 

  37. Azuma A, Takahashi S, Nose M, Araki K, Araki M, Takahashi T, Hirose M, Kawashima H, Miyasaka M, Kudoh S. Role of E-selectin in bleomycin induced lung fibrosis in mice. Thorax. 2000;55:147–152.

    Article  PubMed  CAS  Google Scholar 

  38. Sato N, Suzuki Y, Nishio K, Suzuki K, Naoki K, Takeshita K, Kudo H, Miyao N, Tsumura H, Serizawa H, Suematsu M, Yamaguchi K. Roles of ICAM-1 for abnormal leukocyte recruitment in the microcirculation of bleomycin-induced fibrotic lung injury. Am J Respir Crit Care Med. 2000;161:16811688.

    Google Scholar 

  39. Folch E, Salas A, Panes J, Gelpi E, Roselo-Catafau J, Anderson DC, Navarro S, Pique JM, Fernandez-Cruz L, Closa D. Role of P-selectin and ICAM-1 in pancreatitis-induced lung inflammation in rats. Ann Surg. 1999;230:792–799.

    Article  PubMed  CAS  Google Scholar 

  40. Dry SM, Bechard KM, Milford EL, Churchill WH, Benjamin RJ. The pathology of transfusion-related acute lung injury. Am J Clin Pathol. 1999;112:216221.

    Google Scholar 

  41. Sakamaki F, Ishizaka A, Handa M, Fujishima S, Urano T, Sayama K, Nakamura H, Kanazawa M, Kawashiro T, Katayama M, Ikeda Y. Soluble form of P-selectin in plasma is elevated in acute lung injury. Am J Respir Crit Care Med. 1995;151:1821–1826.

    PubMed  CAS  Google Scholar 

  42. Moss M, Gillespie MK, Ackerson L, Moore FA, Moore EE, Parsons PE. Endothelial cell activity varies in patients at risk for the adult respiratory distress syndrome. Crit Care Med. 1996;24:1782–1786.

    Article  PubMed  CAS  Google Scholar 

  43. Donelly SC, Haslett C, Dransfield I, Robertson CE, Carter DC, Ross JA, Grant IS, Tedder TF. Role of selectins in development of adult respiratory distress syndrome. Lancet. 1994;344:215–219.

    Article  Google Scholar 

  44. Xu N, Rahman A, Minshall RD, Tiruppathi C, Malik AB. b2-in- tegrin blockade driven by E-selectin promoter prevents neutrophil sequestration and lung injury in mice. Circ Res. 2000;87:254–260.

    PubMed  CAS  Google Scholar 

  45. Murray JF, Matthay MA, Luce JM, Flick MR. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis. 1988;138:720–723.

    PubMed  CAS  Google Scholar 

  46. Sinclair DG, Braude S, Haslam PL, Evans TW. Pulmonary endothe- lial permeability in patients with severe lung injury. Clinical correlates and natural history. Chest. 1994;106:535–539.

    CAS  Google Scholar 

  47. Dudek SM, Garcia JGN. Cyto- skeletal regulation of pulmonary vascular permeability. J Appl Physiol. 2001;91:1487–1500.

    PubMed  CAS  Google Scholar 

  48. Thickett DR, Armstrong L, Christie SJ, Millar AB. Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;164:1601–1605.

    PubMed  CAS  Google Scholar 

  49. Block ER. Pulmonary endothe- lial cell pathobiology: implications for acute lung injury. Am J Med Sci. 1992;304:136–144.

    Article  PubMed  CAS  Google Scholar 

  50. Dr M, Dargent F, Bachmann M, Suter PM, Junod AF. Pulmonary extraction of serotonin and propranolol in patients with adult respiratory distress syndrome. Am Rev Respir Dis. 1985;132:479–484.

    Google Scholar 

  51. Carvalho AC, Bellman SM, Saullo VJ, Quinn D, Zapol WM. Altered factor VIII in acute respiratory failure. N Engl J Med. 1982;307:1113–1119.

    Article  PubMed  CAS  Google Scholar 

  52. Sabharwal AK, Bajaj SP, Ameri A, Tricomi SM, Hyers TM, Dahms TE, Taylor FB, Bajaj MS. Tissue factor pathway inhibitor and von Willebrand factor antigen levels in adult respiratory distress syndrome and in a primate model of sepsis. Am J Respir Crit Care Med. 1995;151:758–767.

    PubMed  CAS  Google Scholar 

  53. Rubin DB, Wiener-Kronish JP, Murray JF, Green DR, Turner J, Luce JM, Montgomery AB, Marks JD, Matthay MA. Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpul- monary sepsis syndrome. J Clin Invest. 1990;86:474–480.

    Article  PubMed  CAS  Google Scholar 

  54. Moss M, Ackerson L, Gillespie MK, Moore FA, Moore EE, Parsons PE. Von Willebrand factor antigen levels are not predictive for the adult respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151:15–20.

    PubMed  CAS  Google Scholar 

  55. Bajaj MS, Tricomi SM. Plasma levels of the three endothelial-specific proteins von Willebrand factor, tissue factor pathway inhibitor, and thrombo- modulin do not predict the development of acute respiratory distress syndrome. Intensive Care Med. 1999;25:1259–1266.

    Article  PubMed  CAS  Google Scholar 

  56. Fisele B, Lamy M, Thijs LG, Keinecke H-O, Schuster H-P, Matthias FR, Fourrier F, Heinrichs H, Delvos U. Antithrombin III in patients with severe sepsis. A randomized, placebo- controlled, double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled, doubleblind trials with antithrombin III in severe sepsis. Intensive Care Med. 1998;24:663–672.

    Article  Google Scholar 

  57. Uchiba M, Okajima K. Anti- thrombin III (AT III) prevents LPS-in- duced pulmonary vascular injury: a novel biological activity of AT III. Semin Thromb Hemost. 1997;23:583–590.

    Article  PubMed  CAS  Google Scholar 

  58. McGregor IR, Perrie AM, Donnelly SC, Haslett C. Modulation of human endothelial thrombomodulin by neutro- phils and their release products. Am J Respir Crit Care Med. 1997;155:47–52.

    Google Scholar 

  59. Distefano G, Romeo MG, Betta P, Rodono A, Amato M. Throm- bomodulin serum levels in ventilated preterm babies with respiratory distress syndrome. Eur J Pediatr. 1998;157:327–330.

    Article  PubMed  CAS  Google Scholar 

  60. Christoforidou-Solomidou M, Kennel S, Scherpereel A, Wiewrodt R, Solo- mides CC, Pietra GG, Murciano JC, Shah SA, Ischiropoulos H, Albelda SM, Muzykantov VR,. Vascular immunotargeting of glucose oxidase to the endothelial antigens induces distinct forms of oxidant acute lung injury: targeting to thrombomodulin, but not to PECAM-1, causes pulmonary thrombosis and neutrophil transmigration. Am J Pathol. 2002;160:1155–1169.

    Google Scholar 

  61. Grau GE, de Moerloose P, Bulla O, Lou J, Lei Z, Reber G, Mili N, Morel DR, Suter PM. Haemostatic properties of human pulmonary and cerebral microvascular endothelial cells. Thromb Haemost. 1997;77:585–590.

    PubMed  CAS  Google Scholar 

  62. Mawji IA, Mardsen PA. Perturbations in paracrine control of the circulation: role of the endothelial-derived vasomediators, endothelin-1 and nitric oxide. Microsc Res Tech. 2003;60:46–58.

    Article  PubMed  CAS  Google Scholar 

  63. Liu S, Crawley DE, Barnes PJ, Evans TW. Endothelium derived relaxing factor inhibits hypoxic pulmonary vasoconstriction in rats. Am Rev Respir Dis. 1991;143:32–37.

    PubMed  CAS  Google Scholar 

  64. Hart CM. Nitric oxide in adult lung disease. Chest. 1999;115:1407–1417.

    Article  PubMed  CAS  Google Scholar 

  65. Dupuis J, Stewart DJ, Cernacek P, Gosselin G. Human pulmonary circulation is an important site for both clearance and production of endothelin- 1. Circulation. 1996;94:1578–1584.

    PubMed  CAS  Google Scholar 

  66. Langleben D, Demarchie M, Laporta D, Spanier AH, Schlesinger D, Stewart DJ. Endothelin-1 in acute lung injury and the adult respiratory distress syndrome. Am Rev Respir Dis. 1993;148:1646–1650.

    Article  PubMed  CAS  Google Scholar 

  67. Sanai L, Haynes WG, MacKenzie A, Grant IS, Webb DJ. Endothelin in sepsis and the adult respiratory distress syndrome. Intensive Care Med. 1996;22:52–56.

    Article  PubMed  CAS  Google Scholar 

  68. Moloney ED, Evans TW. Pathophysiology and pharmacological treatment of pulmonary hypertension in acute respiratory distress syndrome. Eur Respir J. 2003;21:720–727.

    Article  PubMed  CAS  Google Scholar 

  69. Chen XL, Orfanos SE, Catravas JD. Effects of indomethacin on PMA-induced pulmonary endothelial enzyme dysfunction in vivo. Am J Physiol. 1992;262:L153–L162.

    PubMed  CAS  Google Scholar 

  70. Gust R, Kozlowski K, Stephenson AH, Schuster DP. Role of cyclooxy- genase-2 in oleic acid-induced acute lung injury. Am J Respir Crit Care Med. 1999;160:1165–1170.

    PubMed  CAS  Google Scholar 

  71. Clavijo LC, Carter MB, Matheson PJ, Wills-Frank LA, Wilson MA, Wead WB, Garrison RN. Platelet activating factor and bacteremia-induced pulmonary hypertension. J Surg Res. 2000;88:173–180.

    Article  PubMed  CAS  Google Scholar 

  72. Orfanos SE, Kotanidou K, Roussos C. Pulmonary endothelial angio- tensin converting enzyme in lung injury. In: Vincent JL, editor. 2002 Yearbook of intensive care and emergency medicine. Berlin Heidelberg New York: Springer; 2002. p. 100–110.

    Google Scholar 

  73. Linz W, Wohlfart P, Scholkens BA, Malinski T, Wiemer G. Interactions among ACE, kinins and NO. Cardiovasc Res. 1999;43:549–561.

    Article  PubMed  CAS  Google Scholar 

  74. McCloud L, Parkerson JB, Freant L, Hoffman WH, Catravas JD. ß- hydroxybutyrate induces acute pulmonary endothelial dysfunction in rabbits. Exp Lung Res. 2004;30:193–206.

    Article  PubMed  CAS  Google Scholar 

  75. Kohlstedt K, Brandes RP, Muller-Esterl W, Busse R, Fleming I. Angio- tensin converting enzyme is involved in outside-in signalling in endothelial cells. Circ Res. 2004;94:60–67.

    Article  PubMed  CAS  Google Scholar 

  76. Ryan US, Ryan JW, Whitaker C, Chiu A. Localization of angiotensin- converting enzyme (kinase II). Immu- nocytochemistry and immunofluores- cence. Tissue Cell. 1976;8:125–146.

    CAS  Google Scholar 

  77. Orfanos SE, Langleben D, Khoury J, Schlesinger RD, Dragatakis L, Roussos C, Ryan JW, Catravas JD. Pulmonary capillary endothelium-bound angiotensin converting enzyme activity in humans. Circulation. 1999;99:1593–1599.

    PubMed  CAS  Google Scholar 

  78. Casey L, Krieger B, Kohler J, Rice C, Oparil S, Szidon P. Decreased serum angiotensin converting enzyme in adult respiratory distress syndrome associated with sepsis: a preliminary report. Crit Care Med. 1982;9:651–654.

    Article  Google Scholar 

  79. Lazo JS, Catravas JD, Gillis CN. Reduction in rabbit serum and pulmonary angiotensin converting enzyme after subacute bleomycin treatment. Biochem Pharmacol. 1981;30:25772584.

    Article  Google Scholar 

  80. Dobuler KJ, Catravas JD, Gillis CN. Early detection of oxygen-induced lung injury in conscious rabbits: reduced in vivo activity of angiotensin converting enzyme and removal of 5-hydoxytryptamine. Am Rev Respir Dis. 1982;126:534–539.

    PubMed  CAS  Google Scholar 

  81. Ehrhart IC, Orfanos SE, McCloud LL, Sickles DW, Hoffman WF, Catravas JD. Vascular recruitment increases evidence of lung injury. Crit Care Med. 1999;27:120–129.

    Article  PubMed  CAS  Google Scholar 

  82. Orfanos SE, Chen XL, Burch SE, Ryan JW, Chunk AYK, Catravas JD. Radiation-induced early pulmonary en- dothelial ectoenzyme dysfunction in vivo: effect of indomethacin. Toxicol Appl Pharmacol. 1994;124:112–122.

    Article  PubMed  CAS  Google Scholar 

  83. Catravas JD, Burch SE, Sprulock BO, Mills LR. Early effects of ionising radiation on pulmonary endothelial angiotensin converting enzyme and 5'-nucleotidase, in vivo. Toxicol Appl Pharmacol. 1988;94:342–355.

    Article  PubMed  CAS  Google Scholar 

  84. Atochina EN, Muzykantov VR, Al- Medhi AB, Danilov SM, Fisher AB. Normotoxic lung ischemia/ reperfusion accelerates shedding of an- giotesin converting enzyme from the pulmonary endothelium. Am J Respir Crit Care Med. 1997;156:1114–1119.

    PubMed  CAS  Google Scholar 

  85. Orfanos SE, Armaganidis A, Glynos C, Psevdi E, Kaltsas P, Sarafidou P, Catravas JD, Dafni UG, Langleben D, Roussos C. Pulmonary capillary endothelium-bound angiotensin converting enzyme activity in acute lung injury. Circulation. 2000;102:2011–2018.

    PubMed  CAS  Google Scholar 

  86. Marshall RP, Webb S, Bellingan GJ, Montgomery HE, Chaudhari B, McAnulty RJ, Humphries SE, Hill MR, Laurent GJ. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;166:646–650.

    Article  PubMed  Google Scholar 

  87. Groeneveld ABJ. Vascular pharmacology of acute lung injury and acute respiratory distress syndrome. Vascul Pharmacol. 2003;39:247–256.

    Article  Google Scholar 

  88. Wang Q, Pfeiffer GR, Stevens T, Doerschuck CM. Lung micro- vascular and arterial endothelial cells differ in their responses to intercellular adhesion molecule-1 ligation. Am J Respir Crit Care Med. 2002;166:872–877.

    Article  PubMed  Google Scholar 

  89. Parthasarathi K, Ichimura H, Bhattacharya J. Septal capillaries communicate pro-inflammatory signals to downstream vascular segments in lung (abstract). Am J Respir Crit Care Med. 2003;167:A121.

    Google Scholar 

  90. Matthay MA, Zimmerman GA, Esmon C, Bhattacharya J, Coller B, Doer- schuck CM, Floros J, Gimbrone MA Jr, Hoffman E, Hubmayr RD, Leppert M, Matalon S, Munford R, Parsons P, Slutsky AS, Tracey KJ, Ward P, Gail DB, Harabin AL,. Future research directions in acute lung injury. Summary of a National Heart, Lung and Blood Institute working group Am J Respir Crit Care Med. 2003;167:1027–1035.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orfanos, S.E., Mavrommati, I., Korovesi, I., Roussos, C. (2012). Pulmonary endothelium in acute lung injury: from basic science to the critically ill. In: Pinsky, M.R., Brochard, L., Mancebo, J., Antonelli, M. (eds) Applied Physiology in Intensive Care Medicine 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28233-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28233-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28232-4

  • Online ISBN: 978-3-642-28233-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics