Skip to main content

Petrological and Mineralogical Studies of the Sibin Bian-Stone, a Material for Making Acupuncture Tools in Ancient China

  • Conference paper
  • First Online:
Proceedings of the 10th International Congress for Applied Mineralogy (ICAM)

Abstract

Bian-stone therapy has a long history of application in ancient China. Our recent studies reveal that Sibin bian-stone is a structurally compact micromeritic limestone with 96% (wt) CaCO3. Its normal far-infrared (FIR) radiation power is as high as 0.923 in the 8–14 μm spectral zone. In order to investigate the relation between the mineral-constituent features and IR emission ability, a detailed mineralogical study of the bian-stone sample was conducted by using the Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM). The Raman spectroscopic study confirmed the existence of 1–3-μm sized pyrite, anatase and graphite in calcite interstices and revealed two broad peaks of graphite being always present in the spectra of calcite, pyrite and anatase, respectively. HRTEM studies showed that the calcite grains are composed of numerous nanometre-sized crystals, with nanometre-sized graphite commonly occurring in calcite interstices. The occurrence of nanometre-sized calcite crystals is the most important mineralogical background accounting for the good thermal radiation property of the bian-stone. The common presence of nanometre-sized graphite enhances the thermal conductivity and heat-storing capability. The good pyroelectric property of pyrite, the good infrared absorption and reflection capability as well as the high photoelectricity transformation rate of anatase subordinately enhance the infrared radiation capability of the bian-stone. It is believed that the combination of good thermal properties of the above four minerals makes the Sibin bian-stone a useful material with very good physiotherapic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Qin Qiu (2002): Discovery of the Sibin bian-stone makes the rebirth of the ancient bian-stone. Journal of China Academy of Chinese Medicine (18): 4 (in Chinese).

    Google Scholar 

  2. Pan Feng and Qin Qiu (2006): Bian-stone scraping assists the development of acupuncture cause. Science News, January 16, A3 (in Chinese).

    Google Scholar 

  3. Geng Naiguang (2006): New Bian-Stone Therapy (Revised Edition). Xueyuan Press, Beijing: 13–33 (in Chinese).

    Google Scholar 

  4. Humphries, DW (1992): The preparation of thin sections of rocks, minerals and ceramics. Royal Microscopical Society, Oxford Science Publications. Microscopy Handbooks (24): 83.

    Google Scholar 

  5. Renishaw Limited. Library of minerals and inorganic materials and polymer (Database). R02-S/N H13621, INORGAN. 2002, Spectra numbers: LIB 306, LIB 83, LIB 395 and LIB 279.

    Google Scholar 

  6. Xu Peicang, Li Rubi, Wang Yongqiang, Wang Zhihai, and Li Yueqin (1996): Raman Spectroscopy in Geosciences. Shaanxi Science & Technology Press, Xi’an: 76 (in Chinese).

    Google Scholar 

  7. Pasteris, JD, and Wopenka, B (1991): Raman spectra of graphite as indicators of degree of metamorphism. The Canadian Mineralogist (29/1): 1–9.

    Google Scholar 

  8. Toulukian, YS, Judd, WR, and Roy, RF (1990): Physical Properties of Rocks and Minerals. Oil Industry Press, Beijing: pp. 299 (Translated version in Chinese).

    Google Scholar 

  9. Yu Bing and Tu Nianxi (1993): Handbook of Nonmetallic Materials. China Goods and Materials Press, Beijing: 636–652 (in Chinese).

    Google Scholar 

  10. Editorial Board of Handbook for Nonmetallic Ore Industry (1992): Handbook for Nonmetallic Ore Industry. Metallurgy Industry Press, Beijing: 84–89, 729 (in Chinese).

    Google Scholar 

  11. Ma Hongwen (2002): Industrial Rocks and Minerals. Geology Publishing House, Beijing: 479 (in Chinese).

    Google Scholar 

  12. Zhang Lide and Mou Xiumei (2001): Nanomaterials and Nanostructures. Science Press, Beijing: 525 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiande Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, X., Wang, F., Sun, Z., Lo, P.L., Kong, K.C., Xie, N. (2012). Petrological and Mineralogical Studies of the Sibin Bian-Stone, a Material for Making Acupuncture Tools in Ancient China. In: Broekmans, M. (eds) Proceedings of the 10th International Congress for Applied Mineralogy (ICAM). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27682-8_93

Download citation

Publish with us

Policies and ethics