Skip to main content

Friction and Internal Friction Measurements by Atomic Force Acoustic Microscopy

  • Chapter
  • First Online:
Acoustic Scanning Probe Microscopy

Part of the book series: NanoScience and Technology ((NANO))

  • 1835 Accesses

Abstract

Atomic force acoustic microscopy (AFAM) is a contact-resonance spectroscopy technique originally designed to determine elastic properties at the nanometer scale. While the load dependent shift of contact-resonance frequencies has been exploited to determine the elasticity of sample surfaces, less attention has been given to the damping of contact resonances. In this chapter, the authors show how the atomic force microscopy technique can be used to measure interfacial and internal friction by analyzing the Q-factor of contact-resonance curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.B. Elings, J.A. Gurley, US Patent 5,266,801, (1993)

    Google Scholar 

  2. P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma, Nanotechnology 2, 103 (1991)

    Article  ADS  Google Scholar 

  3. U. Rabe, K. Janser, W. Arnold, Rev. Sci. Instrum. 67, 3281 (1996)

    Article  ADS  Google Scholar 

  4. K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike, T. Goto, Surf. Interf. Anal. 27, 600 (1999)

    Article  Google Scholar 

  5. U. Rabe, S. Amelio, E. Kester, V. Scherer, S. Hirsekorn, W. Arnold, Ultrasonics 38, 430 (2000)

    Article  Google Scholar 

  6. M. Kopynciska-Müller, A. Caron, S. Hirsekorn, U. Rabe, H. Natter, R. Hempelmann, R. Birringer, W. Arnold, Z. Phys. Chem. 222, 471 (2008)

    Article  Google Scholar 

  7. U. Rabe, Applied Scanning Probe Methods (Springer, Heidelberg, 2006), p. 90

    Google Scholar 

  8. D.C. Hurley, J.A. Turner, J. Appl. Phys. 102, 033509 (2007)

    Article  ADS  Google Scholar 

  9. F. Oulevey, G. Gremaud, A. Semoroz, A.J. Kulik, N.A. Burnham, E. Dupas, Rev. Sci. Instrum. 72, 3891 (2001)

    Article  ADS  Google Scholar 

  10. K. Yamanaka, Y. Maruyama, T. Tsuji, K. Nakomoto, Appl. Phys. Lett. 78, 1939 (2001)

    Article  ADS  Google Scholar 

  11. M. Reinstaedtler, U. Rabe, V. Scherer, U. Hartmann, A. Goldade, B. Bhushan, W. Arnold, Appl. Phys. Lett. 82, 2604 (2003)

    Article  ADS  Google Scholar 

  12. J.P. Den Hartog, Mechanical Vibrations (Dover Publication Inc., New York, 1985)

    Google Scholar 

  13. D.C. Hurley, M. Kopycinska-Mueller, A.B. Kos, R.H. Geiss, Meas. Sci. Technol. 16, 2167 (2005)

    Article  Google Scholar 

  14. T. Tsuji, S. Saito, K. Fukuda, K. Yamanaka, H. Ogiso, J. Akedo, Y. Kawakami, Appl. Phys. Lett. 87, 071909 (2005)

    Article  ADS  Google Scholar 

  15. A. Kumar, U. Rabe, W. Arnold, Jap. J. Appl. Phys. 47, 6077 (2008)

    Article  ADS  Google Scholar 

  16. J.A. Turner, S. Hirsekorn, U. Rabe, W. Arnold, J. Appl. Phys. 82, 966 (1997)

    Article  ADS  Google Scholar 

  17. P.A. Yuya, D.C. Hurley, J.A. Turner, J. Appl. Phys. 104, 074916 (2008)

    Article  ADS  Google Scholar 

  18. P.E. Mazeran, J.L. Loubet, Tribol. Lett. 3, 125 (1997)

    Article  Google Scholar 

  19. F.J. Espinoza-Beltrán, K. Geng, J. Muñoz-Saldanã , U. Rabe, S. Hirsekorn, W. Arnold, New J. Phys. 11, 083034 (2009)

    Google Scholar 

  20. F.J. Espinoza Beltrán, T. Scholz, G.A. Schneider, J. Munõz-Saldanã, U. Rabe, W. Arnold, J. Phys. Conf. Ser. 61, 293 (2007)

    Google Scholar 

  21. D. Passeri, A. Bettucci, M. Germano, M. Rossi, A. Alippi, A. Fiori, E. Tamburri, S. Orlanducci, M.L. Terranova, J.J. Vlassak, Microelectron. Eng. 84, 490 (2007)

    Article  Google Scholar 

  22. D. Passeri, A. Bettucci, M. Rossi, Anal. Bioanal. Chem. 396, 2769 (2010)

    Article  Google Scholar 

  23. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 613 (1992)

    Article  ADS  Google Scholar 

  25. U. Rabe, M. Kopycinska, S. Hirsekorn, J. Munöz-Saldanä, G.A. Schneider, W. Arnold, J. Phys. D 35, 2621 (2002)

    Article  ADS  Google Scholar 

  26. M. Kopycinska-Müller, R.H. Geiss, D.C. Hurley, Ultramicroscopy 106, 466 (2006)

    Article  Google Scholar 

  27. D. Passeri, A. Bettucci, M. Germano, M. Rossi, A. Alippi, S. Orlanducci, M.L. Terranova, M. Ciavarella, Rev. Sci. Instrum. 76, 093904 (2005)

    Article  ADS  Google Scholar 

  28. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    MATH  Google Scholar 

  29. A. Caron, Akustische Rasterkraftmikroskopie an nanokristallinem Nickel: Von der Elastizitaet zum elastisch-plastischen Uebergang, Ph.D. Thesis, Science and Technical Faculty III, Saarland University, Germany (2009) (unpublished)

    Google Scholar 

  30. S. Amelio, A.V. Goldade, U. Rabe, V. Scherer, B. Bhushan, W. Arnold, Thin Solid Films 392, 75 (2001)

    Article  ADS  Google Scholar 

  31. G. Stan, R.F. Cook, Nanotechnology 19, 235701 (2008)

    Article  ADS  Google Scholar 

  32. B. Bhushan, Diam. Relat. Mater. 8, 1985 (1999)

    Article  ADS  Google Scholar 

  33. X. Li, B. Bhushan, J. Mater. Res. 14, 2328 (1999)

    Article  ADS  Google Scholar 

  34. D. Schneider, T. Schwarz, H.J. Scheibe, M. Panzner, Thin Solid Films 295, 107 (1997)

    Article  ADS  Google Scholar 

  35. G. Kopycinska-Müller, R.H. Geiss, J. Müller, D.C. Hurley, Nanotechnology 16, 703 (2005)

    Article  ADS  Google Scholar 

  36. B. Yang, Grain size effects on the mechanical behaviour of polycrystalline nickel from micro to nanoscale, Ph.D. Thesis, Science and Technical Faculty III, Saarland University, 2006. Shaker, ISBN 978-3-8322-5833-7 (2007)

    Google Scholar 

  37. B. Yang, H. Vehoff, A. Barnoush, Z. Phys. Chem. 222, 499 (2008)

    Article  Google Scholar 

  38. K. Fujiwara, H. Tanimoto, M. Mizubayashi, Mater. Sci. Eng. A 442, 336 (2006)

    Article  Google Scholar 

  39. Y. Zhou, U. Erb, K.T. Aust, G. Palumbo, Z. Metallk. 94, 10 (2003)

    Google Scholar 

  40. T.D. Shen, C.C. Koch, T.Y. Tsui, G.M. Pharr, J. Mater. Res. 6, 1012 (1991)

    Article  Google Scholar 

  41. J. Tian, H. Ogi, M. Hirao, Appl. Phys. Lett. 87, 204107 (2005)

    Article  ADS  Google Scholar 

  42. H. Wagner, D. Bedorf, S. Küchemann, M. Schwabe, B. Zhang, W. Arnold, K. Samwer, Nat. Mater. 10, 1–4 (2011)

    Article  Google Scholar 

  43. A. Caron, W. Arnold, Acta Mater. 57, 4353 (2009)

    Article  Google Scholar 

  44. N. Burnham, A.J. Kulik, G. Gremaud, P.J. Gallo, F. Oulevey, J. Vac. Sci. Technol. B 14, 794 (1996)

    Article  Google Scholar 

  45. U. Rabe, Akustische kraftmikroskopie im ultraschallfrequenzbereich, Ph.D. Thesis, Technical Faculty, Saarland University, 1996, (unpublished)

    Google Scholar 

  46. M.C. Junger, D. Feit, Sound, Structures and Their Interactions (MIT Press, Cambridge, 1972)

    Google Scholar 

  47. P.A. Yuya, D.C. Hurley, J.A. Turner, J. Appl. Phys. 109, 113528 (2011)

    Article  ADS  Google Scholar 

  48. H. Ogi, H. Niho, M. Hirao, Appl. Phys. Lett. 88, 141110 (2006)

    Article  ADS  Google Scholar 

  49. C. Suryanarayana, D. Mukhopadhyasay, S.N. Patankar, F.H. Froes, J. Mater. Res. 7, 2114 (1992)

    Article  ADS  Google Scholar 

  50. A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, Scripta Metall. 23, 1679 (1989)

    Article  Google Scholar 

  51. R.O. Scattergood, C.C. Koch, Scripta Metall. Mater. 27, 1195 (1992)

    Article  Google Scholar 

  52. M. Gutkin, I. Ovid’ko, I.M. Gutkin, Plastic Deformation of Nanocrystalline Materials (Springer, Berlin, 2004)

    Google Scholar 

  53. B. Yang, H. Vehoff, Mater. Sci. Eng. A 400–401, 467 (2005)

    Google Scholar 

  54. D. Hull, D.J. Bacon, Introduction to Dislocations (Pergamon Press, Oxford, 1965)

    Google Scholar 

  55. A.J. Haslam, V. Yamakov, D. Moldovan, D. Wolf, S.R. Phillpot, H. Gleiter, Acta Mater. 52, 1971 (2004)

    Article  Google Scholar 

  56. A.J. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Acta Mater. 51, 2097 (2003)

    Article  Google Scholar 

  57. A.G. Froseth, P.M. Derlet, H. Van Swygenhoven, Acta Mater 52, 5863 (2004)

    Article  Google Scholar 

  58. D. Wolf, V. Yamakov, S.R. Pillpot, A. Mukherjee, H. Gleiter, Acta Mater. 53, 1 (2005)

    Article  Google Scholar 

  59. J. Schiotz, F.D. Di Tolla, K. Jakobsen, Nature 391, 561 (1998)

    Article  ADS  Google Scholar 

  60. E.T. Lilleoden, J.A. Zimmerman, S.M. Foiles, W.D. Nix, J. Mater. Res. 51, 901 (2003)

    Google Scholar 

  61. D. Fechtinger, P.M. Derlet, H. Van Swygenhoven, Phys. Rev. B 67, 024113 (2003)

    Article  ADS  Google Scholar 

  62. T. Tsuji, H. Irihama, T. Mihara, K. Yamanaka, Key Eng. Mater. 262–263, 1067 (2004)

    Article  Google Scholar 

  63. T.A. Michalske, J.E. Houston, Acta Mater. 46, 391 (1998)

    Article  Google Scholar 

  64. J.P. Hirth, J. Lothe, Theory of Dislocations (Krieger, Malabar, 1982)

    Google Scholar 

  65. V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter, Acta Mater. 49, 2713 (2001)

    Article  Google Scholar 

  66. J.C.M. Li, J. Appl. Phys. 32, 525 (1961)

    Article  ADS  Google Scholar 

  67. H. Gleiter, J. Less-Common Met. 28, 297 (1972)

    Article  Google Scholar 

  68. C.W. Price, J.P. Hirth, Mater. Sci. Eng. 9, 15 (1972)

    Article  Google Scholar 

  69. W.A. Soer, K.E. Aifantis, JThM De Hosson, Acta Mater. 53, 4665 (2005)

    Article  Google Scholar 

  70. A.S. Nowick, B.S. Berry, Anelastic Relaxation of Solids (Academic Press, New York, 1972)

    Google Scholar 

  71. R.T. Beyer, S.V. Letcher, Physical Ultrasonics (Academic Press, New York, 1969)

    Google Scholar 

  72. B. Lüthi, Physical Acoustics in the Solid State (Springer, Berlin, 2007)

    Google Scholar 

  73. A. Bhatia, Ultrasonic Absorption (Oxford University Press, Oxford, 1967)

    Google Scholar 

  74. A.V. Granato, K. Lücke, J. Appl. Phys. 27, 583 (1956)

    Article  ADS  MATH  Google Scholar 

  75. Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, B. Schmitt, Science 304, 273 (2004)

    Article  ADS  Google Scholar 

  76. B. Bhushan (ed.), Nanomechanics and Nanotribology, 2nd edn. (Springer, Berlin, 2008)

    Google Scholar 

  77. E. Gnecco, E. Meyer (eds.), Fundamentals of Friction and Wear on the Nanoscale (Springer, Berlin, 2007)

    Google Scholar 

  78. T. Göddenhenrich, S. Müller, C. Heiden, Rev. Sci. Instrum. 65, 2870 (1994)

    Article  ADS  Google Scholar 

  79. A. Caron, W. Arnold, H.-J. Fecht, Jap. J. Appl. Phys. 49, 120204 (2010)

    Article  ADS  Google Scholar 

  80. R. Truell, C. Elbaum, B.B. Chick, Ultrasonic Methods in Solid State Physics (Academic, New York, 1969)

    Google Scholar 

  81. D. Schneider, T. Schwarz, H.-J. Scheibe, M. Panzner, Thin Solid Films 295, 107 (1997)

    Article  ADS  Google Scholar 

  82. http://www.gwyddion.net

  83. P.E. Mazeran, J.L. Loubet, Tribol. Lett. 7, 199 (1999)

    Article  Google Scholar 

  84. M.A. Lantz, S.J. O’Shea, M.E. Welland, K.L. Johnson, Phys. Rev. B 55, 10776 (1997)

    Article  ADS  Google Scholar 

  85. P.E. Mazeran, M. Beyaoui, Tribol. Lett. 30, 1 (2008)

    Article  Google Scholar 

  86. R.D. Mindlin, W.P. Mason, J.F. Osmer, H. Deresiewicz, in Proceeding of the 1st US National Congress Applied Mechanics, ed. by E. Sternberg. (E. Brothers, Ann Harbor, 1952), p. 203

    Google Scholar 

  87. B. Bhushan, Nanotribology, Nanomechanics and Materials Characterization in Nanotribology and Nanomechanics, 2nd edn, ed. by B. Bhushan (Springer, Berlin, 2008), pp. 311–416

    Google Scholar 

  88. E. Gnecco, R. Bennewitz, O. Pfeiffer, A. Socoliuc, E. Meyer, Friction and Wear on the Atomic Scale in Nanotribology and Nanomechanics, 2nd edn, ed. by B. Bhushan (Springer, Berlin, 2008), pp. 557–605

    Google Scholar 

  89. O. Zwoerner, H. Hoelscher, U.D. Schwarz, R. Wiesendanger, Appl. Phys. A 66, 263 (1998)

    Article  ADS  Google Scholar 

  90. R. Bennewitz, T. Gyalog, M. Guggisberg, M. Bammerlin, E. Meyer, H.-J. Guentherodt, Phys. Rev. B 60, R11301 (1999)

    Article  ADS  Google Scholar 

  91. E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, J. Guentherodt, Phys. Rev. Lett. 84, 1172 (2000)

    Article  ADS  Google Scholar 

  92. N.S. Tambe, B. Bhushan, Nanotechnology 15, 1561 (2004)

    Article  ADS  Google Scholar 

  93. N.S. Tambe, B. Bhushan, Nanotechnology 16, 2309 (2005)

    Article  ADS  Google Scholar 

  94. F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Appl. Phys. Lett. 71, 1177 (1997)

    Article  ADS  Google Scholar 

  95. M.T. Cuberes, Nanoscale Friction and Ultrasonics in Fundamentals of Friction and Wear on the Nanoscale, ed. by E. Gnecco, E. Meyer (Springer, Berlin, 2007), pp. 49–71, and references therein

    Google Scholar 

  96. V. Scherer, B. Bhushan, U. Rabe, W. Arnold, IEEE Trans. Magn. 33, 4077 (1997)

    Article  ADS  Google Scholar 

  97. V. Scherer, W. Arnold, B. Bhushan, Surf. Interface Anal. 27, 578 (1999)

    Article  Google Scholar 

  98. K. Goebbels, in Research techniques in NDT, vol. IV, ed. by R.S. Sharpe (Academic Press, New York, 1980), p. 87

    Google Scholar 

  99. S. Luxenburger, W. Arnold, Ultrasonics 40, 797 (2002)

    Article  Google Scholar 

  100. I.A. Inman, S. Datta, H.L. Du, J.S. Burnell-Gray, Q. Luo, Wear 254, 461 (2003)

    Article  Google Scholar 

  101. C.H. Hager Jr, J. Hu, C. Muratore, A.A. Voevodin, R. Grandhi, Wear 268, 1195 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The results presented in this chapter were obtained when the authors were with the Fraunhofer Institute for Non-Destructive Testing (IZFP) Saarbrücken, Germany (A.C and W.A.), and the Institute of Micro- and Nanomaterials (IMNM), University of Ulm, Ulm, Germany (A.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Caron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caron, A., Arnold, W. (2013). Friction and Internal Friction Measurements by Atomic Force Acoustic Microscopy. In: Marinello, F., Passeri, D., Savio, E. (eds) Acoustic Scanning Probe Microscopy. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27494-7_14

Download citation

Publish with us

Policies and ethics