Skip to main content

Optical Coherence Tomography in Glaucoma

  • Chapter
  • First Online:
Optical Coherence Tomography

Abstract

Retinal nerve fiber layer (RNFL) thinning and optic nerve head cupping are key diagnostic features of glaucomatous optic neuropathy. The higher resolution of the recently introduced SD-OCT offers enhanced visualization and improved segmentation of the retinal layers, providing a higher accuracy in identification of subtle changes of the optic disc and RNFL thinning associated with glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.A. Quigley, A.T. Broman, The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90(3), 262–267 (2006)

    Article  Google Scholar 

  2. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G.P. Pokharel, S.P. Mariotti, Global data on visual impairment in the year 2002. Bull. World Health Organ. 82(11), 844–851 (2004)

    Google Scholar 

  3. W.M. Grant, J.F. Burke Jr., Why do some people go blind from glaucoma? Ophthalmology 89(9), 991–998 (1982)

    Google Scholar 

  4. M.C. Leske, A. Heijl, M. Hussein, B. Bengtsson, L. Hyman, E. Komaroff, Early Manifest Glaucoma Trial Group, Factors for glaucoma progression and the effect of treatment: the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 121(1), 48–56 (2003)

    Google Scholar 

  5. L. Zangwill, F. Medeiros, C. Bowd, R. Weinreb, Optic nerve imaging: recent advances, in Essentials in Ophthalmology ed. by F. Grehn, R. Stamper Glaucoma. (Springer, Berlin, 2004), pp. 63–91

    Google Scholar 

  6. N. Strouthidis, D. Garway-Heath, New developments in Heidelberg retina tomograph for glaucoma. Curr. Opin. Ophthalmol. 19(2), 141–148 (2008)

    Article  Google Scholar 

  7. R.W. Knighton, X.R. Huang, D.S. Greenfield, Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment. Invest. Ophthalmol. Vis. Sci. 43(2), 383–392 (2002)

    Google Scholar 

  8. X.R. Huang, R.W. Knighton, Microtubules contribute to the birefringence of the retinal nerve fiber layer. Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005)

    Article  Google Scholar 

  9. C. Bowd, I.M. Tavares, F.A. Medeiros, L.M. Zangwill, P.A. Sample, R.N. Weinreb, Retinal nerve fiber layer thickness and visual sensitivity using scanning laser polarimetry with variable and enhanced corneal compensation. Ophthalmology 114(7), 1259–1265 (2007)

    Article  Google Scholar 

  10. F.A. Medeiros, C. Bowd, L.M. Zangwill, C. Patel, R.N. Weinreb, Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest. Ophthalmol. Vis. Sci. 48(7), 3146–3153 (2007)

    Article  Google Scholar 

  11. T.A. Mai, N.J. Reus, H.G. Lemij, Structure-function relationship is stronger with enhanced corneal compensation than with variable corneal compensation in scanning laser polarimetry. Invest. Ophthalmol. Vis. Sci. 48(4), 1651–1658 (2007)

    Article  Google Scholar 

  12. D.S. Greenfield, R.N. Weinreb, Role of optic nerve imaging in glaucoma clinical practice and clinical trials. Am. J. Ophthalmol. 145(4), 598–603 (2008)

    Article  Google Scholar 

  13. G. Wollstein, J.S. Schuman, L.L. Price, A. Aydin, P.C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J.G. Fujimoto, L.A. Paunescu, Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch. Ophthalmol. 123(4), 464–470 (2005)

    Article  Google Scholar 

  14. C.K. Leung, C.Y. Cheung, R.N. Weinreb, K. Qiu, S. Liu, H. Li, G. Xu, N. Fan, C.P. Pang, K.K. Tse, D.S. Lam, Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest. Ophthalmol. Vis. Sci. 51(1), 217–222 (2010)

    Article  Google Scholar 

  15. J.S. Schuman, Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Trans. Am. Ophthalmol. Soc. 106, 426–458 (2008)

    Google Scholar 

  16. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Google Scholar 

  17. E.A. Swanson, J.A. Izatt, M.R. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18(21), 1864–1866 (1993)

    Article  ADS  Google Scholar 

  18. A.F. Fercher, C.K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, In vivo optical coherence tomography. Am. J. Ophthalmol. 116(1), 113–114 (1993)

    Google Scholar 

  19. M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113(3), 325–332 (1995)

    Article  Google Scholar 

  20. C.A. Puliafito, M.R. Hee, C.P. LinvE. Reichel, J.S. Schuman, J.S. Duker, J.A. Izatt, E.A. Swanson, J.G. Fujimoto, Imaging of macular diseases with optical coherence tomography. Ophthalmology 102(2), 217–229 (1995)

    Google Scholar 

  21. J.S. Schuman, M.R. Hee, A.V. Arya, T. Pedut-Kloizman, C.A. Puliafito, J.G. Fujimoto, E.A. Swanson, Optical coherence tomography: a new tool for glaucoma diagnosis. Curr. Opin. Ophthalmol. 6(2), 89–95 (1995)

    Article  Google Scholar 

  22. J.S. Schuman, M.R. Hee, C.A. Puliafito, C. Wong, T. Pedut-Kloizman, C.P. Lin, E. Hertzmark, J.A. Izatt, E.A. Swanson, J.G. Fujimoto, Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch. Ophthalmol. 113(5), 586–596 (1995)

    Article  Google Scholar 

  23. J.S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M.R. Hee, J.R. Wilkins, J.G. Coker, C.A. Puliafito, J.G. Fujimoto, E.A. Swanson, Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103(11), 1889–1898 (1996)

    Google Scholar 

  24. D.L. Budenz, R.T. Chang, X. Huang, R.W. Knighton, J.M. Tielsch, Reproducibility of retinal nerve fiber thickness measurements using the Stratus OCT in normal and glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. 46(7), 2440–2443 (2005)

    Article  Google Scholar 

  25. S. Zafar, R. Gurses-Ozden, M. Makornwattana, R. Vessani, J.M. Liebmann, C. Tello, R. Ritch, Scanning protocol choice affects optical coherence tomography (OCT-3) measurements. J. Glaucoma. 13(2), 142–144 (2004)

    Article  Google Scholar 

  26. C.K. Leung, W.H. Yung, A.C. Ng, J. Woo, M.K. Tsang, K.K. Tse, Evaluation of scanning resolution on retinal nerve fiber layer measurement using optical coherence tomography in normal and glaucomatous eyes. J. Glaucoma. 13(6), 479–485 (2004)

    Article  Google Scholar 

  27. L.A. Paunescu, J.S. Schuman, L.L. Price, P.C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, J.G. Fujimoto, Reproducibility of nerve fiber layer thickness and optic nerve head measurements using Stratus OCT. Invest Ophthalmol Vis Sci. 45(6), 1716–1724 (2004)

    Article  Google Scholar 

  28. D.L. Budenz, M.J. Fredette, W.J. Feuer, D.R. Anderson, Reproducibility of peripapillary retinal nerve fiber thickness measurements with Stratus OCT in glaucomatous eyes. Ophthalmology 115(4), 661.e4–666.e4 (2008)

    Google Scholar 

  29. D.L. Budenz, A. Michael, R.T. Chang, J. McSoley, J. Katz, Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology 112(1), 3–9 (2005)

    Article  Google Scholar 

  30. F.A. Medeiros, L.M. Zangwill, C. Bowd, R.M. Vessani, R. Susanna Jr., R.N. Weinreb, Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am. J. Ophthalmol. 139(1), 44–55 (2005)

    Article  Google Scholar 

  31. J.L. Hougaard, A. Heijl, B. Bengtsson, Glaucoma detection by Stratus OCT. J. Glaucoma. 16(3), 302–306 (2007)

    Article  Google Scholar 

  32. T.W. Kim, U.C. Park, K.H. Park, D.M. Kim, Ability of Stratus OCT to identify localized retinal nerve fiber layer defects in patients with normal standard automated perimetry results. Invest. Ophthalmol. Vis. Sci. 48(4), 1635–1641 (2007)

    Article  Google Scholar 

  33. E.J. Lee, T.W. Kim, K.H. Park, M. Seong, H. Kim, D.M. Kim, Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. Invest. Ophthalmol. Vis. Sci. 50(2), 662–668 (2009)

    Article  Google Scholar 

  34. F.A. Medeiros, L.M. Zangwill, L.M. Alencar, C. Bowd, P.A. Sample, R. Susanna Jr., R.N. Weinreb, Detection of glaucoma progression with Stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest. Ophthalmol. Vis. Sci. 50(12), 5741–5748 (2009)

    Article  Google Scholar 

  35. F.A. Medeiros, L.M. Zangwill, C. Bowd, R.M. Vessani, R. Susanna Jr., R.N. Weinreb, Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am. J. Ophthalmol. 139(1), 44–55 (2005)

    Article  Google Scholar 

  36. D.S. Greenfield, H. Bagga, R.W. Knighton, Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch. Ophthalmol. 121(1), 41–46 (2003)

    Google Scholar 

  37. H.D. Jampel, D. Friedman, H. Quigley, S. Vitale, R. Miller, F. Knezevich, Y. Ding, Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. Am. J. Ophthalmol. 147(1), 39.e1–44.e1 (2009)

    Google Scholar 

  38. R.M. Vessani, R. Moritz, L. Batis, R.B. Zagui, S. Bernardoni, R. Susanna, Comparison of quantitative imaging devices and subjective optic nerve head assessment by general ophthalmologists to differentiate normal from glaucomatous eyes. J. Glaucoma. 18(3), 253–261 (2009)

    Article  Google Scholar 

  39. N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, J.F. de Boer, In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt. Lett. 29(5), 480–482 (2004)

    Article  ADS  Google Scholar 

  40. M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112(10), 1734–1746 (2005)

    Article  Google Scholar 

  41. A.O. González-García, G. Vizzeri, C. Bowd, F.A. Medeiros, L.M. Zangwill, R.N. Weinreb, Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. Am. J. Ophthalmol. 147(6), 1067–1074, 1074.e1 (2009)

    Google Scholar 

  42. Y. Nakatani, T. Higashide, S. Ohkubo, H. Takeda, K. Sugiyama, Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J. Glaucoma. 20(4), 252–259 (2011)

    Article  Google Scholar 

  43. M.N. Menke, P. Knecht, V. Sturm, S. Dabov, J. Funk, Reproducibility of nerve fiber layer thickness measurements using 3D Fourier-domain OCT. Invest. Ophthalmol. Vis. Sci. 49(12), 5386–5391 (2008)

    Article  Google Scholar 

  44. J.C. Mwanza, R.T. Chang, D.L. Budenz, M.K. Durbin, M.G. Gendy, W. Shi, W.J. Feuer, Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with Cirrus TM HD-OCT in glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. 51(11), 5724–5730 (2010)

    Article  Google Scholar 

  45. S.H. Lee, S.H. Kim, T.W. Kim, K.H. Park, D.M. Kim, Reproducibility of retinal nerve fiber thickness measurements using the test-retest function of Spectral OCT/SLO in normal and glaucomatous eyes. J. Glaucoma. 19(9), 637–642 (2010)

    Article  Google Scholar 

  46. F. Berisha, S. Aliyeva, N. Pfeiffer, E.M. Hoffmann, Intraobserver reproducibility of retinal nerve fiber layer thickness measurements using the RTVue OCT in normal and glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. (2009). ARVO E-Abstract#2261

    Google Scholar 

  47. E.M. Hoffmann, A. Schulze, J. Lamparter, N. Pfeiffer, Comparison of Fourier Domain Optical Coherence Tomography (FD-OCT) measurements in subjects with and without pupil dilation. Invest. Ophthalmol. Vis. Sci. (2009). ARVO E-Abstract#239

    Google Scholar 

  48. J.Y. Huang, M. Pekmezci, N. Mesiwala, A. Kao, S. Lin, Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with Fourier-domain optical coherence tomography. J. Glaucoma. 20(2), 87–94 (2011)

    Article  Google Scholar 

  49. O. Tan, V. Chopra, A.T. Lu, J.S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, D. Huang, Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116(12), 2305–2314.e1–2 (2009)

    Google Scholar 

  50. S. Li, X. Wang, S. Li, G. Wu, N. Wang, Evaluation of optic nerve head and retinal nerve fiber layer in early and advance glaucoma using frequency-domain optical coherence tomography. Graefes Arch. Clin. Exp. Ophthalmol. 248(3), 429–434 (2010)

    Article  MathSciNet  Google Scholar 

  51. A. Schulze, N. Pfeiffer, S. Günther, E.M. Hoffmann, Measurement of retinal ganglion cell complex in glaucoma, ocular hypertension and healthy subjects with Fourier domain optical coherence tomographic (Rtvue 100, Optovue). Invest. Ophthalmol. Vis. Sci. (2009). ARVO E-Abstract#3323

    Google Scholar 

  52. M. Sehi, D.S. Grewal, C.W. Sheets, D.S. Greenfield, Diagnostic ability of Fourier-domain vs time-domain optical coherence tomography for glaucoma detection. Am. J. Ophthalmol. 148(4), 597–605 (2009)

    Article  Google Scholar 

  53. C.J. Shin, K.R. Sung, T.W. Um, Y.J. Kim, S.Y. Kang, J.W. Cho, S.B. Park, J.R. Park, M.S. Kook, Comparison of retinal nerve fibre layer thickness measurements calculated by the optic nerve head map (NHM4) and RNFL3.45 modes of spectral-domain optical coherence tomography (RTVue-100). Br. J. Ophthalmol. 94(6), 763–767 (2010)

    Google Scholar 

  54. O.J. Knight, R.T. Chang, W.J. Feuer, D.L. Budenz, Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. Ophthalmology 116(7), 1271–1277 (2009)

    Article  Google Scholar 

  55. C.K. Leung, C.Y. Cheung, R.N. Weinreb, Q. Qiu, S. Liu, H. Li, G. Xu, N. Fan, L. Huang, C.P. Pang, D.S. Lam, Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 116(7), 1257–1263, 1263.e1–e2 (2009)

    Google Scholar 

  56. C.K. Leung, S. Lam, R.N. Weinreb, S. Liu, C. Ye, L. Liu, J. He, G.W. Lai, T. Li, D.S. Lam, Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 117(9), 1684–1691 (2010)

    Article  Google Scholar 

  57. R.T. Chang, O.J. Knight, W.J. Feuer, D.L. Budenz, Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology 116(12), 2294–2299 (2009)

    Article  Google Scholar 

  58. G.C. Massa, V.G. Vidotti, F. Cremasco, A.P. Lupinacci, V.P. Costa, Influence of pupil dilation on retinal nerve fibre layer measurements with spectral domain OCT. Eye (Lond.) 24(9), 1498–1502 (2010)

    Google Scholar 

  59. G. Savini, M. Carbonelli, V. Parisi, P. Barboni, Effect of pupil dilation on retinal nerve fibre layer thickness measurements and their repeatability with Cirrus HD-OCT. Eye (Lond.) 24(9), 1503–1508 (2010)

    Google Scholar 

  60. F.K. Horn, C.Y. Mardin, R. Laemmer, D. Baleanu, A.M. Juenemann, F.E. Kruse, R.P. Tornow, Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT. Invest. Ophthalmol. Vis. Sci. 5 0(5), 1971–1977 (2009)

    Google Scholar 

  61. C.K. Leung, C. Ye, R.N. Weinreb, C.Y. Cheung, Q. Qiu, S. Liu, G. Xu, D.S. Lam, Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography a study on diagnostic agreement with Heidelberg retinal tomograph. Ophthalmology 117(2), 267–274 (2010)

    Article  Google Scholar 

  62. A. Schulze, J. Lamparter, N. Pfeiffer, E.M. Hoffmann, Comparison of optic disc topographic measurements using Fourier-domain optical coherence tomography and confocal scanning laser ophthalmoscopy in glaucoma patients and normal subjects. Invest. Ophthalmol. Vis. Sci. (2010). ARVO E-Abstract#4895

    Google Scholar 

  63. M.T. Leite, H.L. Rao, R.N. Weinreb, L.M. Zangwill, C. Bowd, P.A. Sample, A. Tafreshi, F.A. Medeiros, Agreement among spectral-domain optical coherence tomography instruments for assessing retinal nerve fiber layer thickness. Am. J. Ophthalmol. 151(1), 85.e1–92.e1 (2011)

    Google Scholar 

  64. M. Choma, M. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)

    Article  ADS  Google Scholar 

  65. E.C. Lee, J.F. de Boer, M. Mujat, H. Lim, S.H. Yun, In vivo optical frequency domain imaging of human retina and choroid. Opt. Express 14(10), 4403–4411 (2006)

    Article  ADS  Google Scholar 

  66. T.H. Ko, J.G. Fujimoto, J.S. Schuman, L.A. Paunescu, A.M. Kowalevicz, I. Hartl, W. Drexler, G. Wollstein, H. Ishikawa, J.S. Duker, Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology. Ophthalmology 112(11), 1992.e1–1992.15 (2005)

    Google Scholar 

  67. U. Schmidt-Erfurth, R.A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A.F. Fercher, W. Drexler, Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005)

    Article  Google Scholar 

  68. E.J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P.M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler, Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator. Vision Res. 45(28), 3432–3444 (2005)

    Article  Google Scholar 

  69. R.J. Zawadzki, S.S. Choi, A.R. Fuller, J.W. Evans, B. Hamann, J.S. Werner, Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography. Opt. Express 17(5), 4084–4094 (2009)

    Article  ADS  Google Scholar 

  70. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C.K. Hitzenberger, Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison. J. Biophotonics. 1(2), 129–139 (2008)

    Article  Google Scholar 

  71. M. Yamanari, M. Miura, S. Makita, T. Yatagai, Y. Yasuno, Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry. J. Biomed. Opt. 13(1), 014013 (2008)

    Google Scholar 

  72. Y. Wang, B.A. Bower, J.A. Izatt, O. Tan, D. Huang, Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J. Biomed. Opt. 13(6), 064003 (2008)

    Google Scholar 

  73. R.M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C.K. Hitzenberger, R.A. Leitgeb, L. Schmetterer, Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. Opt. Lett. 33(24), 2967–2969 (2008)

    Article  ADS  Google Scholar 

  74. F. Berisha, G.T. Feke, T. Hirose, J.W. McMeel, L.R. Pasquale, Retinal blood flow and nerve fiber layer measurements in early-stage open-angle glaucoma. Am. J. Ophthalmol. 146(3), 466–472 (2008)

    Article  Google Scholar 

  75. N. Plange, M. Kaup, A. Weber, K.O. Arend, A. Remky, Retrobulbar haemodynamics and morphometric optic disc analysis in primary open-angle glaucoma. Br. J. Ophthalmol. 90(12), 1501–1504 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatmire Berisha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berisha, F., Hoffmann, E.M., Pfeiffer, N. (2012). Optical Coherence Tomography in Glaucoma. In: Bernardes, R., Cunha-Vaz, J. (eds) Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27410-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27410-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27409-1

  • Online ISBN: 978-3-642-27410-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics