Skip to main content

Diffusion Models in Life Sciences

  • Chapter
  • First Online:
Inference for Diffusion Processes
  • 1904 Accesses

Abstract

This chapter investigates models for the spread of infectious diseases as a representative application field which involves large populations. In particular, it covers the standard susceptible–infected–removed (SIR) model and proposes an extension in order to allow for host heterogeneity. The considered dynamics is described in terms of jump processes, deterministic processes and diffusion processes. The latter enables convenient simulation of the random course of an epidemic even for large populations. The purpose of this chapter is on the one hand to illustrate the methods from Chap. 4 for the approximation of Markov jump processes by diffusions. On the other hand, the presented models and their diffusion approximations are the basis for Chap. 8, where Bayesian inference is performed on them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, the number is α ⋅S ∕ (N − 1) as self-infections are excluded. However, this difference is compensated by adequate choice of α and marginal for large N anyway. Division by N instead of N − 1 is the standard notation.

References

  • Abundo M (1991) A stochastic model for predator-prey systems: basic properties, stability and computer simulation. J Math Biol 29:495–511

    Article  MathSciNet  MATH  Google Scholar 

  • Allen L (2003) An introduction to stochastic processes with applications to biology. Pearson Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Alonso D, McKane A, Pascual M (2007) Stochastic amplification in epidemics. J R Soc Interface 4:575–582

    Article  Google Scholar 

  • Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis. Lecture notes in statistics, vol 151. Springer, New York

    Google Scholar 

  • Bailey N (1975) The mathematical theory of infectious diseases, 2nd edn. Charles Griffin, London

    MATH  Google Scholar 

  • Ball F (1986) A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models. Adv Appl Probab 18:289–310

    Article  MATH  Google Scholar 

  • Ball F, Sirl D, Trapman P (2010) Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Math Biosci 224:53–73

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour A (1974) On a functional central limit theorem for Markov population processes. Adv Appl Probab 6:21–39

    Article  MathSciNet  MATH  Google Scholar 

  • Barbour A (1976) Quasi-stationary distributions in Markov population processes. Adv Appl Probab 8:296–314

    Article  MathSciNet  MATH  Google Scholar 

  • Berkaoui A, Bossy M, Diop A (2005) Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence. Working paper 5637, INRIA Sophia Antipolis

    Google Scholar 

  • Beutels P, Shkedy Z, Aerts M, van Damme P (2006) Social mixing patterns for transmission models of close contact infections: exploring self-evaluation and diary-based data collection through a web-based interface. Epidemiol Infect 134:1158–1166

    Article  Google Scholar 

  • Clancy D, O’Neill P, Pollett P (2001) Approximations for the long-term behavior of an open-population epidemic model. Methodol Comput Appl Probab 3:75–95

    Article  MathSciNet  MATH  Google Scholar 

  • Daley D, Gani J (1999) Epidemic modelling: an introduction. Cambridge studies in mathematical biology, vol 15. Cambridge University Press, Cambridge

    Google Scholar 

  • Dargatz C, Georgescu V, Held L (2006) Stochastic modelling of the spatial spread of influenza in Germany. Austrian J Stat 35:5–20

    Google Scholar 

  • Débarre F, Bonhoeffer S, Regoes R (2007) The effect of population structure on the emergence of drug resistance during influenza pandemics. J R Soc Interface 4:893–906

    Article  Google Scholar 

  • Dybiec B, Kleczkowski A, Gilligan C (2009) Modelling control of epidemics spreading by long-range interactions. J R Soc Interface 6:941–950

    Article  Google Scholar 

  • Edmunds W, O’Callaghan C, Nokes D (1997) Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proc R Soc Lond Ser B 264:949–957

    Article  Google Scholar 

  • Edmunds W, Kafatos G, Wallinga J, Mossong J (2006) Mixing patterns and the spread of close-contact infectious diseases. Emerg Themes Epidemiol 3:14847–14852

    Article  Google Scholar 

  • Germann T, Kadau K, Longini I, Macken C (2006) Mitigation strategies for pandemic influenza in the United States. Proc Natl Acad Sci USA 103:5935–5940

    Article  Google Scholar 

  • Heesterbeek J, Roberts M (2007) The type-reproduction number T in models for infectious disease control. Math Biosci 206:3–10

    Article  MathSciNet  MATH  Google Scholar 

  • Hufnagel L, Brockmann D, Geisel T (2004) Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci USA 101:15124–15129

    Article  Google Scholar 

  • Isham V (2004) Stochastic models for epidemics. Research Report No 263, Department of Statistical Science, University College London

    Google Scholar 

  • Kaneko H, Nakao S (1988) A note on approximation for stochastic differential equations. In: Séminaire de Probabilités XXII. Lecture notes in mathematics. Springer, Berlin/Heidelberg

    Google Scholar 

  • Keeling M, Rohani P (2008) Modeling infectious disease in humans and animals. Princeton University Press, Princeton

    Google Scholar 

  • Kloeden P, Platen E (1999) Numerical solution of stochastic differential equations, 3rd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Kurtz T (1981) Approximation of population processes. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Kushner H (1972) Stability and existence of diffusions with discontinuous or rapidly growing drift terms. J Differ Equ 11:156–168

    Article  MathSciNet  MATH  Google Scholar 

  • Kusuoka S (2010) Existence of densities of solutions of stochastic differential equations by Malliavin calculus. J Funct Anal 258:758–784

    Article  MathSciNet  MATH  Google Scholar 

  • Marion G, Mao X, Renshaw E (2002) Convergence of the Euler scheme for a class of stochastic differential equation. Int Math J 1:9–22

    MathSciNet  MATH  Google Scholar 

  • McCormack R, Allen L (2006) Stochastic SIS and SIR multihost epidemic models. In: Agarwal R, Perera K (eds) Proceedings of the conference on differential and difference equations and applications. Hindawi, Cairo, pp 775–785

    Google Scholar 

  • Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Scalia Tomba G, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M, Edmunds W (2008) Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5:381–391

    Article  Google Scholar 

  • Nagaev A, Startsev A (1970) The asymptotic analysis of a stochastic model of an epidemic. Theory Probab Appl 15:98–107

    Article  MATH  Google Scholar 

  • Roberts M, Heesterbeek J (2003) A new method for estimating the effort required to control an infectious disease. Proc R Soc Lond Ser B 270:1359–1364

    Article  Google Scholar 

  • Sani A, Kroese D, Pollett P (2007) Stochastic models for the spread of HIV in a mobile heterosexual population. Math Biosci 208:98–124

    Article  MathSciNet  MATH  Google Scholar 

  • Uphoff H, Stalleicken I, Bartelds A, Phiesel B, Kistemann B (2004) Are influenza surveillance data useful for mapping presentations? Virus Res 103:35–46

    Article  Google Scholar 

  • Wallinga J, Teunis P, Kretzschmar M (2006) Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol 164:936–944

    Article  Google Scholar 

  • Wang F (1977) Gaussian approximation of some closed stochastic epidemic models. J Appl Probab 14:221–231

    Article  MATH  Google Scholar 

  • Watts D, Muhamad R, Medina D, Dodds P (2005) Multiscale, resurgent epidemics in a hierarchical metapopulation model. Proc Natl Acad Sci USA 102:11157–11162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchs, C. (2013). Diffusion Models in Life Sciences. In: Inference for Diffusion Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25969-2_5

Download citation

Publish with us

Policies and ethics