Skip to main content

Muscarinic Receptor Agonists and Antagonists: Effects on Cancer

  • Chapter
  • First Online:
Muscarinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 208))

Abstract

Many epithelial and endothelial cells express a cholinergic autocrine loop in which acetylcholine acts as a growth factor to stimulate cell growth. Cancers derived from these tissues similarly express a cholinergic autocrine loop and ACh secreted by the cancer or neighboring cells interacts with M3 muscarinic receptors expressed on the cancer cells to stimulate tumor growth. Primary proliferative pathways involve MAPK and Akt activation. The ability of muscarinic agonists to stimulate, and M3 antagonists to inhibit tumor growth has clearly been demonstrated for lung and colon cancer. The ability of muscarinic agonists to stimulate growth has been shown for melanoma, pancreatic, breast, ovarian, prostate and brain cancers, suggesting that M3 antagonists will also inhibit growth of these tumors as well. As yet no clinical trials have proven the efficacy of M3 antagonists as cancer therapeutics, though the widespread clinical use and low toxicity of M3 antagonists support the potential role of these drugs as adjuvants to current cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman MS, Roeske WR, Heck RJ, Korc M (1989) Identification and characterization of muscarinic receptors in cultured human pancreatic carcinoma cells. Pancreas 4:363–370

    Article  PubMed  CAS  Google Scholar 

  • Aihara T, Nakamura Y, Taketo MM, Matsui M, Okabe S (2005) Cholinergically stimulated gastric acid secretion is mediated by M(3) and M(5) but not M(1) muscarinic acetylcholine receptors in mice. Am J Physiol Gastrointest Liver Physiol 288:G1199–G1207

    Article  PubMed  CAS  Google Scholar 

  • Arredondo J, Hall LL, Ndoye A, Chernyavsky AI, Jolkovsky DL, Grando SA (2003) Muscarinic acetylcholine receptors regulating cell cycle progression are expressed in human gingival keratinocytes. J Periodontal Res 38:79–89

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi A, Ramachandran J, Capon DJ (1989) Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes. Nature 340:146–150

    Article  PubMed  CAS  Google Scholar 

  • Batra S, Popper LD, Iosif CS (1993) Characterisation of muscarinic cholinergic receptors in human ovaries, ovarian tumours and tumour cell lines. Eur J Cancer 29A:1302–1306

    Article  PubMed  CAS  Google Scholar 

  • Bennasroune A, Gardin A, Aunis D, Cremel G, Hubert P (2004) Tyrosine kinase receptors as attractive targets of cancer therapy. Crit Rev Oncol Hematol 50:23–38

    Article  PubMed  Google Scholar 

  • Boss A, Oppitz M, Drews U (2005) Muscarinic cholinergic receptors in the human melanoma cell line SK-Mel 28: modulation of chemotaxis. Clin Exp Dermatol 30:557–564

    Article  PubMed  CAS  Google Scholar 

  • Bowers JW, Schlauder SM, Calder KB, Morgan MB (2008) Acetylcholine receptor expression in Merkel cell carcinoma. Am J Dermatopathol 30:340–343

    Article  PubMed  Google Scholar 

  • Buchli R, Ndoye A, Arredondo J, Webber RJ, Grando SA (2001) Identification and characterization of muscarinic acetylcholine receptor subtypes expressed in human skin melanocytes. Mol Cell Biochem 228:57–72

    Article  PubMed  CAS  Google Scholar 

  • Cabello G, Valenzuela M, Vilaxa A, Duran V, Rudolph I, Hrepic N, Calaf G (2001) A rat mammary tumor model induced by the organophosphorous pesticides parathion and malathion, possibly through acetylcholinesterase inhibition. Environ Health Perspect 109:471–479

    Article  PubMed  CAS  Google Scholar 

  • Casarosa P, Kiechle T, Sieger P, Pieper MP, Gantner F (2010) The constitutive activity of the human muscarinic M3 receptor unmasks differences in the pharmacology of anticholinergics. J Pharmacol Exp Ther 333:201–209

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Samimi R, Xie G, Shant J, Drachenberg C, Wade M, Davis RJ, Nomikos G, Raufman JP (2008) Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation. Am J Physiol Gastrointest Liver Physiol 295(3):G591–G597

    Article  PubMed  CAS  Google Scholar 

  • Chernyavsky AI, Arredondo J, Wess J, Karlsson E, Grando SA (2004) Novel signaling pathways mediating reciprocal control of keratinocyte migration and wound epithelialization through M3 and M4 muscarinic receptors. J Cell Biol 166:261–272

    Article  PubMed  CAS  Google Scholar 

  • Chien JL, Warren JR (1985) Differentiation of muscarinic cholinergic receptors in acinar carcinoma of rat pancreas. Cancer Res 45:4858–4863

    PubMed  CAS  Google Scholar 

  • Chien JL, Warren JR (1986) Muscarinic receptor coupling to intracellular calcium release in rat pancreatic acinar carcinoma. Cancer Res 46:5706–5714

    PubMed  CAS  Google Scholar 

  • Cunningham JM, Lennon VA, Lambert EH, Scheithauer B (1985) Acetylcholine receptors in small cell carcinomas. J Neurochem 45:159–167

    Article  PubMed  CAS  Google Scholar 

  • de Martinez-Lopez CA, Nieto-Ceron S, Pons-Castillo A, Galbis-Martinez L, Latour-Perez J, Torres-Lanzas J, Tovar-Zapata I, Martinez-Hernandez P, Rodriguez-Lopez JN, Cabezas-Herrera J (2008) Cancer-associated differences in the acetylcholinesterase activity in bronchial aspirates of lung cancer patients. Clin Sci (Lond) 115(8):245–253

    Article  Google Scholar 

  • Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–562

    Article  PubMed  CAS  Google Scholar 

  • Espanol AJ, de la TE, Fiszman GL, Sales ME (2007) Role of non-neuronal cholinergic system in breast cancer progression. Life Sci 80:2281–2285

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SM, Bazalakova M, Savchenko V, Tapia JC, Wright J, Blakely RD (2004) Lethal impairment of cholinergic neurotransmission in hemicholinium-3-sensitive choline transporter knockout mice. Proc Natl Acad Sci U S A 101:8762–8767

    Article  PubMed  CAS  Google Scholar 

  • Fiszman GL, Middonno MC, De la TE, Farina M, Espanol AJ, Sales ME (2007) Activation of muscarinic cholinergic receptors induces MCF-7 cells proliferation and angiogenesis by stimulating nitric oxide synthase activity. Cancer Biol Ther 6:1106–1113

    Article  PubMed  CAS  Google Scholar 

  • Friday BB, Adjei AA (2008) Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res 14:342–346

    Article  PubMed  CAS  Google Scholar 

  • Fritz S, Wessler I, Breitling R, Rossmanith W, Ojeda SR, Dissen GA, Amsterdam A, Mayerhofer A (2001) Expression of muscarinic receptor types in the primate ovary and evidence for nonneuronal acetylcholine synthesis. J Clin Endocrinol Metab 86:349–354

    Article  PubMed  CAS  Google Scholar 

  • Frucht H, Gazdar AF, Park JA, Oie H, Jensen RT (1992) Characterization of functional receptors for gastrointestinal hormones on human colon cancer cells. Cancer Res 52:1114–1122

    PubMed  CAS  Google Scholar 

  • Frucht H, Jensen RT, Dexter D, Yang WL, Xiao Y (1999) Human colon cancer cell proliferation mediated by the M3 muscarinic cholinergic receptor. Clin Cancer Res 5:2532–2539

    PubMed  CAS  Google Scholar 

  • Fujii T, Yamada S, Yamaguchi N, Fujimoto K, Suzuki T, Kawashima K (1995) Species differences in the concentration of acetylcholine, a neurotransmitter, in whole blood and plasma. Neurosci Lett 201:207–210

    Article  PubMed  CAS  Google Scholar 

  • Gabrielson E (2006) Worldwide trends in lung cancer pathology. Respirology 11:533–538

    Article  PubMed  Google Scholar 

  • Gautam D, Han SJ, Heard TS, Cui Y, Miller G, Bloodworth L, Wess J (2005) Cholinergic stimulation of amylase secretion from pancreatic acinar cells studied with muscarinic acetylcholine receptor mutant mice. J Pharmacol Exp Ther 313:995–1002

    Article  PubMed  CAS  Google Scholar 

  • Gautam D, Han SJ, Hamdan FF, Jeon J, Li B, Li JH, Cui Y, Mears D, Lu H, Deng C, Heard T, Wess J (2006) A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 3:449–461

    Article  PubMed  CAS  Google Scholar 

  • Glunde K, Ackerstaff E, Mori N, Jacobs MA, Bhujwalla ZM (2006) Choline phospholipid metabolism in cancer: consequences for molecular pharmaceutical interventions. Mol Pharm 3:496–506

    Article  PubMed  CAS  Google Scholar 

  • Grando SA (2011) Muscarinic receptor agonists and antagonists: effects on keratinocyte function. In: Fryer AD (ed) Muscarinic receptors, Handbook of experimental pharmacology. Springer, Heidelberg

    Google Scholar 

  • Grando SA, Kist DA, Qi M, Dahl MV (1993) Human keratinocytes synthesize, secrete, and degrade acetylcholine. J Invest Dermatol 101:32–36

    Article  PubMed  CAS  Google Scholar 

  • Grando SA, Pittelkow MR, Schallreuter KU (2006) Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J Invest Dermatol 126:1948–1965

    Article  PubMed  CAS  Google Scholar 

  • Gromada J, Hughes TE (2006) Ringing the dinner bell for insulin: muscarinic M3 receptor activity in the control of pancreatic beta cell function. Cell Metab 3:390–392

    Article  PubMed  CAS  Google Scholar 

  • Guizzetti M, Costa LG (2001) Activation of phosphatidylinositol 3 kinase by muscarinic receptors in astrocytoma cells. Neuroreport 12:1639–1642

    Article  PubMed  CAS  Google Scholar 

  • Guizzetti M, Costa P, Peters J, Costa LG (1996) Acetylcholine as a mitogen: muscarinic receptor-mediated proliferation of rat astrocytes and human astrocytoma cells. Eur J Pharmacol 297:265–273

    Article  PubMed  CAS  Google Scholar 

  • Jimenez E, Montiel M (2005) Activation of MAP kinase by muscarinic cholinergic receptors induces cell proliferation and protein synthesis in human breast cancer cells. J Cell Physiol 204:678–686

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2004) Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol Pharmacol 65:2–11

    Article  PubMed  CAS  Google Scholar 

  • Klapproth H, Reinheimer T, Metzen J, Munch M, Bittinger F, Kirkpatrick CJ, Hohle KD, Schemann M, Racke K, Wessler I (1997) Non-neuronal acetylcholine, a signalling molecule synthezised by surface cells of rat and man. Naunyn Schmiedebergs Arch Pharmacol 355:515–523

    Article  PubMed  CAS  Google Scholar 

  • Kodaira M, Kajimura M, Takeuchi K, Lin S, Hanai H, Kaneko E (1999) Functional muscarinic m3 receptor expressed in gastric cancer cells stimulates tyrosine phosphorylation and MAP kinase. J Gastroenterol 34:163–171

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Abbas AK, Fausto N, Aster JC (2009) Robbins and Cotran pathologic basis of disease, 8th edn. W.B. Saunders Company, Philadelphia, PA

    Google Scholar 

  • Lammerding-Koppel M, Noda S, Blum A, Schaumburg-Lever G, Rassner G, Drews U (1997) Immunohistochemical localization of muscarinic acetylcholine receptors in primary and metastatic malignant melanomas. J Cutan Pathol 24:137–144

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Huang CS, Chen CS, Tu SH, Wang YJ, Chang YJ, Tam KW, Wei PL, Cheng TC, Chu JS, Chen LC, Wu CH, Ho YS (2010) Overexpression and activation of the {alpha}9-nicotinic receptor during tumorigenesis in human breast epithelial cells. J Natl Cancer Inst 102:1322–1335

    Article  PubMed  CAS  Google Scholar 

  • Leonard A, Cuq P, Magous R, Bali JP (1991) M3-subtype muscarinic receptor that controls intracellular calcium release and inositol phosphate accumulation in gastric parietal cells. Biochem Pharmacol 42:839–845

    Article  PubMed  CAS  Google Scholar 

  • Luthin GR, Wang P, Zhou H, Dhanasekaran D, Ruggieri MR (1997) Role of m1 receptor-G protein coupling in cell proliferation in the prostate. Life Sci 60:963–968

    Article  PubMed  CAS  Google Scholar 

  • Machova E, O’Regan S, Newcombe J, Meunier FM, Prentice J, Dove R, Lisa V, Dolezal V (2009) Detection of choline transporter-like 1 protein CTL1 in neuroblastoma x glioma cells and in the CNS, and its role in choline uptake. J Neurochem 110(4):1297–1309

    Article  PubMed  CAS  Google Scholar 

  • Mak JC, Baraniuk JN, Barnes PJ (1992) Localization of muscarinic receptor subtype mRNAs in human lung. Am J Respir Cell Mol Biol 7:344–348

    PubMed  CAS  Google Scholar 

  • Martinez-Moreno P, Nieto-Ceron S, Torres-Lanzas J, Ruiz-Espejo F, Tovar-Zapata I, Martinez-Hernandez P, Rodriguez-Lopez JN, Vidal CJ, Cabezas-Herrera J (2006) Cholinesterase activity of human lung tumours varies according to their histological classification. Carcinogenesis 27:429–436

    Article  PubMed  CAS  Google Scholar 

  • Matthiesen S, Bahulayan A, Kempkens S, Haag S, Fuhrmann M, Stichnote C, Juergens UR, Racke K (2006) Muscarinic receptors mediate stimulation of human lung fibroblast proliferation. Am J Respir Cell Mol Biol 35:621–627

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer A, Kunz L (2005) A non-neuronal cholinergic system of the ovarian follicle. Ann Anat 187:521–528

    Article  PubMed  CAS  Google Scholar 

  • Montenegro MF, Nieto-Ceron S, Ruiz-Espejo F, Paez dlC, Rodriguez-Berrocal FJ, Vidal CJ (2005) Cholinesterase activity and enzyme components in healthy and cancerous human colorectal sections. Chem Biol Interact 157–158:429–430

    Article  PubMed  Google Scholar 

  • Morin D, Zini R, Lange F, Lange J, Tillement JP (1987) Alterations of beta-adrenergic, muscarinic cholinergic receptors and imipramine binding sites in human lung tumors. Int J Clin Pharmacol Ther Toxicol 25:605–608

    PubMed  CAS  Google Scholar 

  • Natoli C, Perrucci B, Perrotti F, Falchi L, Iacobelli S (2010) Tyrosine kinase inhibitors. Curr Cancer Drug Targets 10:462–483

    Article  PubMed  CAS  Google Scholar 

  • Negroni MP, Fiszman GL, Azar ME, Morgado CC, Espanol AJ, Pelegrina LT, De la TE, Sales ME (2010) Immunoglobulin G from breast cancer patients in stage I stimulates muscarinic acetylcholine receptors in MCF7 cells and induces proliferation. Participation of nitric oxide synthase-derived nitric oxide. J Clin Immunol 30:474–484

    Article  PubMed  CAS  Google Scholar 

  • Noda S, Lammerding-Koppel M, Oettling G, Drews U (1998) Characterization of muscarinic receptors in the human melanoma cell line SK-Mel-28 via calcium mobilization. Cancer Lett 133:107–114

    Article  PubMed  CAS  Google Scholar 

  • Obara K, Arai K, Miyajima N, Hatano A, Tomita Y, Takahashi K (2000) Expression of m2 muscarinic acetylcholine receptor mRNA in primary culture of human prostate stromal cells. Urol Res 28:196–200

    Article  PubMed  CAS  Google Scholar 

  • Okuda T, Haga T, Kanai Y, Endou H, Ishihara T, Katsura I (2000) Identification and characterization of the high-affinity choline transporter. Nat Neurosci 3:120–125

    Article  PubMed  CAS  Google Scholar 

  • Oppitz M, Mobus V, Brock S, Drews U (2002) Muscarinic receptors in cell lines from ovarian carcinoma: negative correlation with survival of patients. Gynecol Oncol 85:159–164

    Article  PubMed  CAS  Google Scholar 

  • Oppitz M, Busch C, Garbe C, Drews U (2008) Distribution of muscarinic receptor subtype M3 in melanomas and their metastases. J Cutan Pathol 35:809–815

    Article  PubMed  Google Scholar 

  • Park JG, Frucht H, LaRocca RV, Bliss DP Jr, Kurita Y, Chen TR, Henslee JG, Trepel JB, Jensen RT, Johnson BE (1990) Characteristics of cell lines established from human gastric carcinoma. Cancer Res 50:2773–2780

    PubMed  CAS  Google Scholar 

  • Pieper MP, Chaudhary NI, Park JE (2007) Acetylcholine-induced proliferation of fibroblasts and myofibroblasts in vitro is inhibited by tiotropium bromide. Life Sci 80:2270–2273

    Article  PubMed  CAS  Google Scholar 

  • Proskocil BJ, Sekhon HS, Jia Y, Savchenko V, Blakely RD, Lindstrom J, Spindel ER (2004) Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial epithelial cells. Endocrinology 145:2498–2506

    Article  PubMed  CAS  Google Scholar 

  • Raufman JP, Chen Y, Cheng K, Compadre C, Compadre L, Zimniak P (2002) Selective interaction of bile acids with muscarinic receptors: a case of molecular mimicry. Eur J Pharmacol 457:77–84

    Article  PubMed  CAS  Google Scholar 

  • Raufman JP, Cheng K, Zimniak P (2003) Activation of muscarinic receptor signaling by bile acids: physiological and medical implications. Dig Dis Sci 48:1431–1444

    Article  PubMed  CAS  Google Scholar 

  • Raufman JP, Samimi R, Shah N, Khurana S, Shant J, Drachenberg C, Xie G, Wess J, Cheng K (2008) Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res 68:3573–3578

    Article  PubMed  CAS  Google Scholar 

  • Rayford W, Noble MJ, Austenfeld MA, Weigel J, Mebust WK, Shah GV (1997) Muscarinic cholinergic receptors promote growth of human prostate cancer cells. Prostate 30:160–166

    Article  PubMed  CAS  Google Scholar 

  • Reinheimer T, Bernedo P, Klapproth H, Oelert H, Zeiske B, Racke K, Wessler I (1996) Acetylcholine in isolated airways of rat, guinea pig, and human: species differences in role of airway mucosa. Am J Physiol 270:L722–L728

    PubMed  CAS  Google Scholar 

  • Reinheimer T, Munch M, Bittinger F, Racke K, Kirkpatrick CJ, Wessler I (1998) Glucocorticoids mediate reduction of epithelial acetylcholine content in the airways of rats and humans. Eur J Pharmacol 349:277–284

    Article  PubMed  CAS  Google Scholar 

  • Ruggieri MR, Colton MD, Wang P, Wang J, Smyth RJ, Pontari MA, Luthin GR (1995) Human prostate muscarinic receptor subtypes. J Pharmacol Exp Ther 274:976–982

    PubMed  CAS  Google Scholar 

  • Schmitt JM, Abell E, Wagner A, Davare MA (2010) ERK activation and cell growth require CaM kinases in MCF-7 breast cancer cells. Mol Cell Biochem 335:155–171

    Article  PubMed  CAS  Google Scholar 

  • Sekhon H, Sauer D, Corless CL, Lupo SL, Lindstrom J, Spindel ER (2002) Expression of nicotinic acetylcholine receptors, choline acetyltransferase and lynx1 in pancreatic carcinoma. Proc AACR 43:A2569; abstract

    Google Scholar 

  • Song P, Spindel ER (2007) Novel Na-independent choline transporters mediate choline transport and acetylcholine induced-proliferation in small cell lung carcinoma. Am J Respir Crit Care Med 175:A47; abstract

    Google Scholar 

  • Song P, Sekhon HS, Jia Y, Keller JA, Blusztajn JK, Mark GP, Spindel ER (2003) Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res 63:214–221

    PubMed  CAS  Google Scholar 

  • Song P, Sekhon HS, Duan J, Mark GP, Spindel ER (2004) Inhibitory regulation by M2 muscarinic acetylcholine receptors is decreased in lung cancers. Am J Respir Crit Care Med 169:A290; abstract

    Google Scholar 

  • Song P, Sekhon HS, Lu A, Arredondo J, Sauer D, Gravett C, Mark GP, Grando SA, Spindel ER (2007) M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res 67:3936–3944

    Article  PubMed  CAS  Google Scholar 

  • Song P, Sekhon HS, Fu XW, Maier M, Jia Y, Duan J, Proskosil BJ, Gravett C, Lindstrom J, Mark GP, Saha S, Spindel ER (2008) Activated cholinergic signaling provides a target in squamous cell lung carcinoma. Cancer Res 68:4693–4700

    Article  PubMed  CAS  Google Scholar 

  • Song P, Maier M, Olivas AS, Spindel ER (2009) Inhibition of lung cancer cell growth by tiotropium: mechanism of action. Am J Respir Crit Care Med 179:A2675; abstract

    Google Scholar 

  • Song P, Olivas AS, Spindel ER (2010) Tiotropium inhibits growth of squamous cell lung carcinoma (SCC) cell lines in vitro and also inhibits SCC growth in vivo in nude mice by inhalation. Eur Respir J 36(946S); abstract

    Google Scholar 

  • Tang X, Batty IH, Downes CP (2002) Muscarinic receptors mediate phospholipase C-dependent activation of protein kinase B via Ca2+, ErbB3, and phosphoinositide 3-kinase in 1321N1 astrocytoma cells. J Biol Chem 277:338–344

    Article  PubMed  CAS  Google Scholar 

  • Ukegawa JI, Takeuchi Y, Kusayanagi S, Mitamura K (2003) Growth-promoting effect of muscarinic acetylcholine receptors in colon cancer cells. J Cancer Res Clin Oncol 129:272–278

    PubMed  CAS  Google Scholar 

  • Wang T, Li J, Chen F, Zhao Y, He X, Wan D, Gu J (2007) Choline transporters in human lung adenocarcinoma: expression and functional implications. Acta Biochim Biophys Sin (Shanghai) 39:668–674

    Article  CAS  Google Scholar 

  • Wessler IK, Kirkpatrick CJ (2001) The non-neuronal cholinergic system: an emerging drug target in the airways. Pulm Pharmacol Ther 14:423–434

    Article  PubMed  CAS  Google Scholar 

  • Wessler IK, Kirkpatrick CJ (2011) Activation of muscarinic receptors by non-neuronal acetylcholine. In: Fryer AD (ed) Muscarinic receptors, Handbook of experimental pharmacology. Springer, Heidelberg

    Google Scholar 

  • Wessler I, Reinheimer T, Klapproth H, Schneider FJ, Racke K, Hammer R (1997) Mammalian glial cells in culture synthesize acetylcholine. Naunyn Schmiedebergs Arch Pharmacol 356:694–697

    Article  PubMed  CAS  Google Scholar 

  • Whitsett JA, Hollinger B (1984) Muscarinic cholinergic receptors in developing rat lung. Pediatr Res 18:1136–1140

    Article  PubMed  CAS  Google Scholar 

  • Williams JA (2006) Regulation of pancreatic acinar cell function. Curr Opin Gastroenterol 22:498–504

    Article  PubMed  Google Scholar 

  • Witte LP, Chapple CR, de la Rosette JJ, Michel MC (2008) Cholinergic innervation and muscarinic receptors in the human prostate. Eur Urol 54:326–334

    Article  PubMed  CAS  Google Scholar 

  • Xie G, Drachenberg C, Yamada M, Wess J, Raufman JP (2005) Cholinergic agonist-induced pepsinogen secretion from murine gastric chief cells is mediated by M1 and M3 muscarinic receptors. Am J Physiol Gastrointest Liver Physiol 289:G521–G529

    Article  PubMed  CAS  Google Scholar 

  • Yagle K, Lu H, Guizzetti M, Moller T, Costa LG (2001) Activation of mitogen-activated protein kinase by muscarinic receptors in astroglial cells: role in DNA synthesis and effect of ethanol. Glia 35:111–120

    Article  PubMed  CAS  Google Scholar 

  • Yang WL, Frucht H (2000) Cholinergic receptor up-regulates COX-2 expression and prostaglandin E(2) production in colon cancer cells. Carcinogenesis 21:1789–1793

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grants RR00163 HL087710 and a research grant from Boehringer Ingelheim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliot R. Spindel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spindel, E.R. (2012). Muscarinic Receptor Agonists and Antagonists: Effects on Cancer. In: Fryer, A., Christopoulos, A., Nathanson, N. (eds) Muscarinic Receptors. Handbook of Experimental Pharmacology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23274-9_19

Download citation

Publish with us

Policies and ethics